Picky Rectangles

A 150 × 70 150\times 70 grid has 178 x × y 178\ x\times y rectangles . Find the value of x + y x+y .

Details and Assumptions:

  • Dimensions are expressed as width × \times height . Thus an x × y x\times y rectangle (that is, a rectangle of width x x and height y y ) is considered to be different from a y × x y\times x (width y , y, height x x ) rectangle. In this problem, you only consider the x × y x\times y rectangles, not the y × x y\times x ones.

This is one part of Quadrilatorics .


The answer is 131.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Kenneth Tan
Dec 26, 2016

Relevant wiki: Quadratic Diophantine Equations - Solve by Factoring

From this note , we know that the number of x × y x\times y rectangles in an a × b a\times b grid given that x a x\leqslant a and y b y\leqslant b is ( a x + 1 ) ( b y + 1 ) (a-x+1)(b-y+1)

Here, we have a = 150 a=150 , b = 70 b=70 , substituting them yields ( 150 x + 1 ) ( 70 y + 1 ) = 178 ( 151 x ) ( 71 y ) = 178 (150-x+1)(70-y+1)=178 \\ (151-x)(71-y)=178 Since x x and y y are integers, x 151 x\leqslant151 , y 71 y\leqslant71 and 178 can be factorised as 1 × 178 1\times178 and 2 × 89 2\times89 , we have { 151 x = 1 71 y = 178 or { 151 x = 2 71 y = 89 or { 151 x = 89 71 y = 2 or { 151 x = 178 71 y = 1 \begin{cases} 151-x=1\\71-y=178 \end{cases} \text{ or } \begin{cases} 151-x=2\\71-y=89 \end{cases} \text{ or } \begin{cases} 151-x=89\\71-y=2 \end{cases} \text{ or } \begin{cases} 151-x=178\\71-y=1 \end{cases} All of them results in { x = 150 y = 107 or { x = 149 y = 18 or { x = 62 y = 69 or { x = 27 y = 70 \begin{cases} x=150\\y=-107 \end{cases} \text{ or } \begin{cases} x=149\\y=-18 \end{cases} \text{ or } \begin{cases} x=62\\y=69 \end{cases} \text{ or } \begin{cases} x=-27\\y=70 \end{cases} Because x x and y y are both positive, hence x = 62 x=62 , y = 69 y=69 , x + y = 131 x+y=131

Saya Suka
Dec 24, 2016

178 = 2 * 89.
Answer.
= (150-89+1) + (70-2+1).
= 131


Can you generalize this? What if the given if there are n (x*y) triangles are there and n has more than 2 factors?

Jun Arro Estrella - 4 years, 5 months ago

Log in to reply

If there are more than 2 factors, then there will be multiple answers. Even 2 factors can produce 2 different ones, but this one does not because 2<70<89<150.

Saya Suka - 4 years, 5 months ago

Log in to reply

@Saya Suka Thanks! noted

Jun Arro Estrella - 4 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...