Piece of cake ?

Calculus Level 5

The red circle is the biggest circle inscribed in the circular sector of angle α \alpha and radius 100 100 .

If α \alpha is chosen uniformly at random between 0 0^\circ and 18 0 180^\circ , what is the expected value of the radius of the red circle? (Give your result to 3 decimals.)


The answer is 36.338.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let the radius of the inscribed circle be r r . We note that:

sin α 2 = r 100 r r = 100 sin α 2 1 + sin α 2 \begin{aligned} \sin \frac \alpha 2 & = \frac r{100-r} \\ \implies r & = \frac {100\sin \frac \alpha 2}{1+\sin \frac \alpha 2} \end{aligned}

Then the expected value of the radius of the inscribed circle for 0 r 18 0 0^\circ \le r \le 180^\circ or 0 r π 0 \le r \le \pi is given by:

E [ R ] = 1 π 0 π 100 sin α 2 1 + sin α 2 d α Let θ = α 2 2 d θ = d α = 200 π 0 π 2 sin θ 1 + sin θ d θ Using half-angle tangent = 200 π 0 1 2 t 1 + t 2 1 + 2 t 1 + t 2 2 d t 1 + t 2 substitution and let t = tan θ 2 = 200 π 0 1 4 t ( t 2 + 1 ) ( t 2 + 2 t + 1 ) d t = 400 π 0 1 ( 1 t 2 + 1 1 ( t + 1 ) 2 ) d t = 400 π [ tan 1 t + 1 t + 1 ] 0 1 = 400 π [ π 4 + 1 2 1 ] = 100 200 π 36.338 \begin{aligned} E[R] & = \frac 1\pi \int_0^\pi \frac {100\sin \frac \alpha 2}{1+\sin \frac \alpha 2} d \alpha & \small \color{#3D99F6} \text{Let }\theta = \frac \alpha 2 \implies 2 d\theta = d\alpha \\ & = \frac {200}\pi \int_0^\frac \pi 2 \frac {\sin \theta}{1+\sin \theta} d \theta & \small \color{#3D99F6} \text{Using half-angle tangent} \\ & = \frac {200}\pi \int_0^1 \frac {\frac {2t}{1+t^2}}{1+\frac {2t}{1+t^2}} \cdot \frac {2\ dt}{1+t^2} & \small \color{#3D99F6} \text{substitution and let }t = \tan \frac \theta 2 \\ & = \frac {200}\pi \int_0^1 \frac {4t}{(t^2+1)(t^2+2t+1)} dt \\ & = \frac {400}\pi \int_0^1 \left(\frac 1{t^2+1} - \frac 1{(t+1)^2}\right) dt \\ & = \frac {400}\pi \left[\tan^{-1} t + \frac 1{t+1}\right]_0^1 \\ & = \frac {400}\pi \left[\frac \pi 4 + \frac 12 - 1 \right] \\ & = 100 - \frac {200}\pi \\ & \approx \boxed{36.338} \end{aligned}

To make things easier you could split 0 π 2 s i n θ s i n θ + 1 d θ = π 2 0 π 2 1 s i n θ + 1 d θ \int_0^\frac {\pi}{2} \frac {sin \theta}{sin \theta + 1} d\theta = \frac{\pi}{2}- \int_0^\frac{\pi}{2} \frac {1}{sin \theta + 1} d\theta and then use Weierstrass' substitution. This is not crucial but makes things a bit easier :)

Robert Szafarczyk - 3 years, 1 month ago

Log in to reply

Or you could multiply top and bottom by 1 sin θ 1-\sin \theta : sin θ sin θ + 1 d θ = sin θ ( 1 sin θ ) 1 sin 2 θ d θ = sin θ sin 2 θ cos 2 θ d θ = 1 cos θ tan 2 θ d θ = 1 cos θ ( tan θ θ ) = 1 sin θ cos θ + θ . \begin{aligned} \int \frac{\sin \theta}{\sin \theta + 1} d\theta &= \int \frac{\sin \theta(1-\sin \theta)}{1-\sin^2\theta} d\theta \\ &= \int \frac{\sin\theta-\sin^2\theta}{\cos^2\theta} d\theta \\ &= \frac1{\cos\theta} - \int \tan^2 \theta \, d\theta \\ &= \frac1{\cos\theta} - (\tan\theta - \theta) \\ &= \frac{1-\sin\theta}{\cos\theta} + \theta. \end{aligned}

Then at θ = π / 2 \theta=\pi/2 this evaluates to π / 2 \pi/2 (have to use L'Hopital on the first part), and at θ = 0 \theta = 0 this evaluates to 1 , 1, so you get 200 π ( π 2 1 ) = 100 200 π . \frac{200}{\pi}\left( \frac{\pi}2 - 1\right) = 100 - \frac{200}{\pi}.

Patrick Corn - 3 years, 1 month ago

Log in to reply

Yeah! This simplifies it too.

Robert Szafarczyk - 3 years, 1 month ago

Since α \alpha is a random number between 180 and 0, wouldn't the expected value of α \alpha be 90°? Therefore, you could just find the radius of a circle inscribed in a quarter circle with radius 100, right?

Blan Morrison - 3 years, 1 month ago

Log in to reply

That's what I was thinking at first but then I realised that the radius of the red circle is not as well distributed as the angle α. That's why it can't be derived to such simplicity.

Robert Szafarczyk - 3 years, 1 month ago

The radius is a function of α , \alpha, say r = f ( α ) , r=f(\alpha), and in general it's not true that E ( f ( α ) ) = f ( E ( α ) ) . E(f(\alpha)) = f(E(\alpha)).

Patrick Corn - 3 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...