Piecewise Functions - 5

Calculus Level 4

Consider a function f : R R f : \mathbb{R} \rightarrow \mathbb{R} such that

f ( x ) = { sin ( π x ) if x Q tan ( π x ) if x ∉ Q f(x) = \begin{cases} \sin(\pi x) & \text{if } x \in \mathbb{Q} \\ \tan(\pi \sqrt{|x|}) & \text{if }x \not \in \mathbb{Q}\end{cases}

Find the sum of all positive integers N < 100 N < 100 , such that lim x N f ( x ) \displaystyle\lim _{x \rightarrow N} f(x) exists.


This problem is part of the set - Piecewise-defined Functions


The answer is 285.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Pranshu Gaba
Oct 26, 2014

For a function f f of the form

f ( x ) = { g ( x ) if x Q h ( x ) if x ∉ Q f(x) = \begin{cases} g(x) & \text{if } x \in \mathbb{Q} \\ h(x) & \text{if } x \not \in \mathbb{Q} \end{cases}

lim x N f ( x ) \displaystyle\lim_{x\rightarrow N} f(x) will exist iff g ( N ) = h ( N ) g(N) = h(N) .

So, we just need to find integer values of N N such that sin ( π N ) = tan ( π N ) \sin (\pi N )= \tan (\pi \sqrt{N})

We know that sin ( π N ) \sin (\pi N) will be 0 0 for all integers N N . So, tan ( π N ) \tan(\pi \sqrt{N}) must also be 0 0 .

Therefore N \sqrt{N} must be an integer, so N N must be a perfect square.

The possible values of N N are 1 2 , 2 2 , 3 2 , 4 2 , 5 2 , 6 2 , 7 2 , 8 2 1^2, 2^2, 3^2, 4^2, 5^2, 6^2, 7^2, 8^2 and 9 2 9^2 .

The Answer = 1 + 4 + 9 + 16 + 25 + 36 + 49 + 64 + 81 = 9 × 10 × 19 6 = 285 1 + 4 + 9 + 16 + 25 + 36 + 49 + 64 + 81 = \frac{9 \times 10 \times 19}{6} = \boxed{285}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...