Piern

Calculus Level 4

f ( x ) = 16 x 2 ( x 2 + 1 ) 3 d x \large f(x)=\int\frac{16x^2}{(x^2+1)^3}dx

Let f ( x ) f(x) be defined as above, f ( 0 ) = 0 f(0)=0 and f ( 1 ) = a π f(1)=a\pi . Find a a .


The answer is 0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

f ( x ) = 32 x 2 ( x 2 + 1 ) 2 d x Let x = tan θ d x = sec 2 θ d θ = 32 tan 2 θ sec 2 θ sec 6 θ d θ = 32 tan 2 θ sec 4 θ d θ = 32 sin 2 θ cos 2 θ d θ = 8 sin 2 2 θ d θ = 4 ( 1 cos 4 θ ) d θ = 4 θ sin 4 θ + C where C is the constant of integration. = 4 θ 2 sin 2 θ cos 2 θ + C = 4 θ 2 sin θ cos θ ( 1 2 sin 2 θ ) + C Note that tan θ = x f ( x ) = 4 tan 1 x 2 x ( 1 x 2 ) 1 + x 2 + C sin θ = x 1 + x 2 , cos θ = 1 1 + x 2 f ( 0 ) = 4 ( 0 ) 0 + C = 0 C = 0 f ( 1 ) = 4 tan 1 1 0 + 0 = π \begin{aligned} f(x) & = \int \frac {32x^2}{(x^2+1)^2} dx & \small \color{#3D99F6} \text{Let }x = \tan \theta \implies dx = \sec^2 \theta \ d\theta \\ & = 32 \int \frac {\tan^2 \theta \sec^2 \theta}{\sec^6 \theta} d \theta \\ & = 32 \int \frac {\tan^2 \theta}{\sec^4 \theta} d \theta \\ & = 32 \int \sin^2 \theta \cos^2 \theta \ d \theta \\ & = 8 \int \sin^2 2\theta \ d \theta \\ & = 4 \int (1-\cos 4 \theta) \ d\theta \\ & = 4 \theta - \sin 4 \theta + \color{#3D99F6} C & \small \color{#3D99F6} \text{where }C \text{ is the constant of integration.} \\ & = 4 \theta - 2 \sin 2\theta \cos 2\theta + C \\ & = 4 \theta - 2 \sin \theta \cos \theta (1 - 2\sin^2 \theta) + C & \small \color{#3D99F6} \text{Note that } \tan \theta = x \implies \\ \implies f(x) & = 4 \tan^{-1} x - \frac {2x(1-x^2)}{1+x^2} + C & \small \color{#3D99F6} \sin \theta = \frac x{\sqrt{1+x^2}}, \ \cos \theta = \frac 1{\sqrt{1+x^2}} \\ f(0) & = 4(0) - 0 + C = 0 & \small \color{#3D99F6} \implies C = 0 \\ f(1) & = 4 \tan^{-1} 1 - 0 + 0 \\ & = \pi \end{aligned}

a = 1 \implies a = \boxed{1}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...