Pin code

Calculus Level pending

J = 0 1 3 x 3 x 2 + 2 x 4 x 2 3 x + 2 d x J = \int_0^1\frac{3x^3-x^2+2x-4}{\sqrt{x^2-3x+2}} dx

Find the value of 1000 J \lfloor | 1000J | \rfloor .


The answer is 2981.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Joe Hall
Jun 20, 2018

Complete the square: 0 1 ( 3 x 3 x 2 + 2 x 4 ) ( x 3 2 ) 2 1 4 d x = 0 1 2 ( 3 x 3 x 2 + 2 x 4 ) ( 2 x 3 ) 2 1 d x \int_0^1\frac{(3x^3-x^2+2x-4)}{\sqrt{(x-\frac{3}{2})^2}-\frac{1}{4}}\mathrm{d}x\\\\ =\int_0^12\frac{(3x^3-x^2+2x-4)}{\sqrt{(2x-3)^2}-1}\mathrm{d}x Now by substitution u = 2 x 3 u=2x-3 such that

d x = 1 2 d u x 2 = ( u + 3 ) 2 4 x 3 = ( u + 3 ) 3 8 = 1 16 0 1 ( 3 u 3 + 25 u 2 + 77 u + 55 ) u 2 1 d u \mathrm{d}x=\frac{1}{2} \mathrm{d} u \hspace{2cm} x^2=\frac{(u+3)^2}{4} \hspace{2cm} x^3=\frac{(u+3)^3}{8}\\\\ =\frac{1}{16}\int_0^1\frac{(3u^3+25u^2+77u+55)}{\sqrt{u^2-1}}\mathrm{d}u

Now we have a simple trigonometric substitution u = sec ( v ) u=\sec(v)

d u = sec ( v ) tan ( v ) d v 0 1 sec ( v ) [ 3 u sec 3 ( v ) + 25 sec 2 ( v ) + 77 sec ( v ) + 55 ] tan ( v ) sec 2 ( v ) 1 d v = 0 1 sec ( v ) [ 3 u sec 3 ( v ) + 25 sec 2 ( v ) + 77 sec ( v ) + 55 ] d v = 3 0 1 sec 4 ( v ) d v + 25 0 1 sec 3 ( v ) d v + 77 0 1 sec 2 ( v ) d v + 55 0 1 sec ( v ) d v \mathrm{d} u = \sec(v)\tan(v)\mathrm{d}v \\\\ \int_0^1\frac{\sec(v)[3u\sec^3(v)+25\sec^2(v)+77\sec(v)+55]\tan(v)}{\sqrt{\sec^2(v)-1}}\mathrm{d}v\\\\ =\int_0^1 \sec(v)[3u\sec^3(v)+25\sec^2(v)+77\sec(v)+55]\mathrm{d} v\\\\ =3\int_0^1 \sec^4(v)\mathrm{d} v +25\int_0^1 \sec^3(v)\mathrm{d} v+77\int_0^1 \sec^2(v)\mathrm{d}v +55\int_0^1 \sec(v)\mathrm{d} v The first integral:

sec 4 ( v ) d v = sec 2 ( v ) [ tan 2 ( v ) 1 ] d v \int \sec^4(v)\mathrm{d}v \\\\ =\int \sec^2(v)[\tan^2(v)-1]\mathrm{d} v Let w = tan ( v ) w=\tan(v) , d w = sec 2 ( v ) d v \mathrm{d} w=\sec^2(v)\mathrm{d} v

( w 2 1 ) d w = w 3 3 w = tan 3 ( v ) 3 tan ( v ) \int (w^2 -1) \mathrm{d} w\\\\ = \frac{w^3}{3}-w\\\\ =\frac{\tan^3(v)}{3}-\tan(v)

Then by the reduction formula we have that:

sin n ( v ) d v = n 2 n 1 sec n 2 ( v ) d v + sec n 2 ( v ) tan ( v ) n 1 \int \sin^n(v)\mathrm{d} v =\frac{n-2}{n-1}\int\sec^{n-2}(v)\mathrm{d} v +\frac{\sec^{n-2}(v)\tan (v)}{n-1} Therefore, for n = 3 n=3

sec 3 ( v ) d v = sec ( v ) tan ( v ) 2 + 1 2 sec ( v ) d v \int\sec ^3(v)\mathrm{d} v = \frac{\sec (v)\tan (v)}{2}+\frac{1}{2}\int\sec (v)\mathrm{d}v

We have a standard integral for n=2

sec 2 ( v ) d v = tan ( v ) \int\sec ^2 (v)\mathrm{d} v = \tan (v) For n = 1 n=1 , we expand and substitute: sec ( v ) d v = sec ( v ) [ tan ( v ) + sec ( v ) ] tan ( v ) + sec ( v ) d v \int\sec (v)\mathrm{d} v=\int\frac{\sec (v)[\tan (v)+\sec (v)]}{\tan (v)+\sec (v)}\mathrm{d} v Let

u = tan ( v ) + sec ( v ) d v = 1 sec 2 ( v ) + sec ( v ) tan ( v ) d u sec ( v ) d v = 1 u d u = ln u = ln ( tan ( v ) + sec ( v ) ) u=\tan (v)+\sec (v) \hspace{2cm} \mathrm{d} v =\frac{1}{\sec^2(v)+\sec (v)\tan (v)}\mathrm{d} u\\\\ \int\sec (v)\mathrm{d} v = \int \frac{1}{u}\mathrm{d} u\\\\ =\ln u\\\\ =\ln (\tan (v)+\sec (v))

Then finally we have:

3 0 1 sec 4 ( v ) d v + 25 0 1 sec 3 ( v ) d v + 77 0 1 sec 2 ( v ) d v + 55 0 1 sec ( v ) d v = 135 ln ( tan ( v ) + sec ( v ) ) 2 + tan 3 ( v ) + 25 tan ( v ) sec ( v ) 2 + 80 tan ( v ) 3\int_0^1 \sec^4(v)\mathrm{d} v +25\int_0^1 \sec^3(v)\mathrm{d} v+77\int_0^1 \sec^2(v)\mathrm{d}v +55\int_0^1 \sec(v)\mathrm{d} v\\\\ =\frac{135\ln (\tan (v) +\sec (v))}{2}+\tan^3(v)+\frac{25\tan (v)\sec (v)}{2}+80\tan (v)

Now undo the substitutions one step at a time, simplify and we arrive at [ 135 ln ( 2 x 2 3 x + 2 + 2 x 3 ) + x 2 3 x + 2 ( 16 x 2 + 52 x + 202 ) 16 ] 0 1 = 2.981266944 \Big[\frac{135\ln (|2\sqrt{x^2-3x+2}+2x-3|)+\sqrt{x^2-3x+2}(16x^2+52x+202)}{16}\Big]_0^1=-2.981266944

Therefore the PIN is 2981

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...