4 π 2 + 1 1 + 1 6 π 2 + 1 1 + 3 6 π 2 + 1 1 + 6 4 π 2 + 1 1 + ⋯ = C e − C A − B e
If A , B and C are positive coprime integers, find A 2 + B 2 + C 2 − 1 .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Could you add a source of proof of the first statement?
S = n = 1 ∑ ∞ ( 2 n π ) 2 + 1 1 = n = 1 ∑ ∞ ( 1 + 2 n π i ) ( 1 − 2 n π i ) 1 = 2 1 n = 1 ∑ ∞ ( 1 + 2 n π i 1 + 1 − 2 n π i 1 ) = 4 π i n = 1 ∑ ∞ ( n + 2 π i 1 − n − 2 π i 1 ) = 4 π i ( ψ ( 1 − 2 π i ) − ψ ( 1 + 2 π i ) ) = 4 π i ( π cot 2 i + 2 π i ) = 4 1 ( e 2 1 − e − 2 1 e 2 1 + e − 2 1 − 2 ) = 4 e − 4 3 − e By ψ ( 1 + z ) = − γ + n = 1 ∑ ∞ ( n 1 − n + z 1 ) where ψ ( ⋅ ) denotes the digamma function. Since ψ ( 1 − z ) = ψ ( z ) + π cot ( π z ) and ψ ( 1 + z ) = ψ ( z ) + z 1
Therefore, A 2 + B 2 + C 2 − 1 = 3 2 + 1 2 + 4 2 − 1 = 2 5 .
Problem Loading...
Note Loading...
Set Loading...
The key fact is that S a = n = − ∞ ∑ ∞ n 2 + a 2 1 = a π coth ( π a ) . This has a lot of classical proofs, which you can look up (e.g. here ).
Applying this with a = 2 π 1 gives n = − ∞ ∑ ∞ 4 π 2 n 2 + 1 4 π 2 2 n = − ∞ ∑ ∞ 4 π 2 n 2 + 1 1 2 ( 1 + 2 n = 1 ∑ ∞ 4 π 2 n 2 + 1 1 ) n = 1 ∑ ∞ 4 π 2 n 2 + 1 1 = 2 π 2 coth ( 1 / 2 ) = coth ( 1 / 2 ) = coth ( 1 / 2 ) = 4 coth ( 1 / 2 ) − 2 1 .
Now 4 coth ( 1 / 2 ) − 2 1 = 4 1 e 1 / 2 − e − 1 / 2 e 1 / 2 + e − 1 / 2 − 2 1 = 4 ( e − 1 ) e + 1 − 2 1 = 4 ( e − 1 ) e + 1 − 2 ( e − 1 ) = 4 e − 4 3 − e . So the answer is 3 2 + 1 2 + 4 2 − 1 = 2 5 .