π e \pi\rightarrow e

Calculus Level 5

1 4 π 2 + 1 + 1 16 π 2 + 1 + 1 36 π 2 + 1 + 1 64 π 2 + 1 + = A B e C e C \large \dfrac{1}{4\pi^2+1}+\dfrac{1}{16\pi^2+1}+\dfrac{1}{36\pi^2+1}+\dfrac{1}{64\pi^2+1}+\cdots=\dfrac{{\color{#D61F06}\mathfrak{A}}-{\color{#20A900}\mathfrak{B}}e}{{\color{#3D99F6}\mathfrak{C}}e-{\color{#3D99F6}\mathfrak{C}}}

If A \color{#D61F06}\mathfrak{A} , B \color{#20A900}\mathfrak{B} and C \color{#3D99F6}\mathfrak{C} are positive coprime integers, find A 2 + B 2 + C 2 1 {\color{#D61F06}\mathfrak{A}}^2+{\color{#20A900}\mathfrak{B}}^2+{\color{#3D99F6}\mathfrak{C}}^2-1 .


The answer is 25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Patrick Corn
Jan 29, 2018

The key fact is that S a = n = 1 n 2 + a 2 = π a coth ( π a ) . S_a = \sum_{n=-\infty}^\infty \frac1{n^2+a^2} = \frac{\pi}a \coth(\pi a). This has a lot of classical proofs, which you can look up (e.g. here ).

Applying this with a = 1 2 π a = \frac1{2\pi} gives n = 4 π 2 4 π 2 n 2 + 1 = 2 π 2 coth ( 1 / 2 ) 2 n = 1 4 π 2 n 2 + 1 = coth ( 1 / 2 ) 2 ( 1 + 2 n = 1 1 4 π 2 n 2 + 1 ) = coth ( 1 / 2 ) n = 1 1 4 π 2 n 2 + 1 = coth ( 1 / 2 ) 4 1 2 . \begin{aligned} \sum_{n=-\infty}^\infty \frac{4\pi^2}{4\pi^2 n^2 + 1} &= 2\pi^2 \coth(1/2) \\ 2 \sum_{n=-\infty}^\infty \frac1{4\pi^2 n^2 + 1} &= \coth(1/2) \\ 2 \left( 1 + 2\sum_{n=1}^\infty \frac1{4\pi^2n^2 + 1} \right) &= \coth(1/2) \\ \sum_{n=1}^\infty \frac1{4\pi^2 n^2 + 1} &= \frac{\coth(1/2)}4-\frac12. \end{aligned}

Now coth ( 1 / 2 ) 4 1 2 = 1 4 e 1 / 2 + e 1 / 2 e 1 / 2 e 1 / 2 1 2 = e + 1 4 ( e 1 ) 1 2 = e + 1 2 ( e 1 ) 4 ( e 1 ) = 3 e 4 e 4 . \begin{aligned} \frac{\coth(1/2)}4-\frac12 &= \frac14 \frac{e^{1/2} + e^{-1/2}}{e^{1/2} - e^{-1/2}} -\frac12 \\ &= \frac{e+1}{4(e-1)} - \frac12 \\ &= \frac{e+1-2(e-1)}{4(e-1)} \\ &= \frac{3-e}{4e-4}. \end{aligned} So the answer is 3 2 + 1 2 + 4 2 1 = 25 . 3^2+1^2+4^2-1 = \fbox{25}.

Could you add a source of proof of the first statement?

Digvijay Singh - 3 years, 4 months ago

Log in to reply

Ok, added a link.

Patrick Corn - 3 years, 4 months ago
Chew-Seong Cheong
Nov 21, 2018

S = n = 1 1 ( 2 n π ) 2 + 1 = n = 1 1 ( 1 + 2 n π i ) ( 1 2 n π i ) = 1 2 n = 1 ( 1 1 + 2 n π i + 1 1 2 n π i ) = i 4 π n = 1 ( 1 n + i 2 π 1 n i 2 π ) By ψ ( 1 + z ) = γ + n = 1 ( 1 n 1 n + z ) = i 4 π ( ψ ( 1 i 2 π ) ψ ( 1 + i 2 π ) ) where ψ ( ) denotes the digamma function. = i 4 π ( π cot i 2 + 2 π i ) Since ψ ( 1 z ) = ψ ( z ) + π cot ( π z ) = 1 4 ( e 1 2 + e 1 2 e 1 2 e 1 2 2 ) and ψ ( 1 + z ) = ψ ( z ) + 1 z = 3 e 4 e 4 \begin{aligned} S & = \sum_{n=1}^\infty \frac 1{(2n\pi)^2+1} \\ & = \sum_{n=1}^\infty \frac 1{(1+2n\pi i)(1-2n\pi i)} \\ & = \frac 12 \sum_{n=1}^\infty \left(\frac 1{1+2n\pi i} + \frac 1{1-2n\pi i}\right) \\ & = \frac i{4\pi} \sum_{n=1}^\infty \left(\frac 1{n+ \frac i{2\pi}} - \frac 1{n - \frac i{2\pi}}\right) & \small \color{#3D99F6} \text{By }\psi (1+z) = - \gamma + \sum_{n=1}^\infty \left(\frac 1n - \frac 1{n+z}\right) \\ & = \frac i{4\pi} \left(\psi \left(1-\frac i{2\pi}\right) - \psi \left(1+\frac i{2\pi}\right) \right) & \small \color{#3D99F6} \text{where }\psi (\cdot) \text{ denotes the digamma function.} \\ & = \frac i{4\pi} \left(\pi \cot \frac i2 + 2\pi i \right) & \small \color{#3D99F6} \text{Since }\psi (1-z) = \psi(z) + \pi \cot(\pi z) \\ & = \frac 14 \left(\frac {e^\frac 12 + e^{-\frac 12}}{e^\frac 12 - e^{-\frac 12}} -2 \right) & \small \color{#3D99F6} \text{and }\psi (1+z) = \psi(z) + \frac 1z \\ & = \frac {3-e}{4e-4} \end{aligned}

Therefore, A 2 + B 2 + C 2 1 = 3 2 + 1 2 + 4 2 1 = 25 {\color{#D61F06} \mathfrak A}^2 + {\color{#20A900} \mathfrak B}^2 + {\color{#3D99F6} \mathfrak C}^2 - 1 = {\color{#D61F06}3}^2 + {\color{#20A900}1}^2 + {\color{#3D99F6}4}^2 - 1 = \boxed {25} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...