pi's and products

Algebra Level 4

l e t : A = n = 2 ( 1 1 n 3 ) & B = n = 1 ( 1 + 1 n ( n + 1 ) ) I f A B = m n w h e r e m , n a r e r e l a t i v e l y p r i m e p o s i t i v e i n t e g e r s , d e t e r m i n e 100 m + n . I t i s a N I M O P r o b l e m let:\\ A=\prod _{ n=2 }^{ \infty }{ \left( 1-\frac { 1 }{ { n }^{ 3 } } \right) } \quad \quad \quad \& \quad \quad \quad B=\prod _{ n=1 }^{ \infty }{ \left( 1+\frac { 1 }{ n(n+1) } \right) } \\ If\quad \frac { A }{ B } =\frac { m }{ n } \quad where\quad m,n\quad are\quad relatively\quad prime\\ positive\quad integers,\quad determine\quad 100m+n.\\ \\\underline{\hspace{ 5 in}} \\It\quad is\quad a\quad NIMO\quad Problem


The answer is 103.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rudresh Tomar
Nov 14, 2014

A = n = 2 ( 1 1 n 3 ) = n = 2 ( ( n 1 ) ( n 2 + n + 1 ) n 3 ) B = n = 2 ( 1 + 1 n ( n + 1 ) ) = n = 2 ( ( n 2 + n + 1 ) n ( n + 1 ) ) A B = 1 2 3 2 [ t h e o t h e r t e r m s w o u l d c a n c e l ] A B = 1 3 m = 1 ; n = 3 100 m + n = 103 A=\prod _{ n=2 }^{ \infty }{ \left( 1-\frac { 1 }{ { n }^{ 3 } } \right) } \\ \quad =\prod _{ n=2 }^{ \infty }{ \left( \frac { (n-1)({ n }^{ 2 }+n+1) }{ { n }^{ 3 } } \right) } \\ B=\prod _{ n=2 }^{ \infty }{ \left( 1+\frac { 1 }{ n(n+1) } \right) } \\ \quad =\prod _{ n=2 }^{ \infty }{ \left( \frac { ({ n }^{ 2 }+n+1) }{ n(n+1) } \right) } \\ \frac { A }{ B } =\frac { \cfrac { 1 }{ 2 } }{ \cfrac { 3 }{ 2 } } \quad \quad \quad \quad \quad \quad [the\quad other\quad terms\quad would\quad cancel]\\ \quad \frac { A }{ B } =\frac { 1 }{ 3 } \quad \Longrightarrow m=1;n=3\\ \therefore \quad 100m+n=103\\

Can someone explain how you got the ratio A/B 1/2 to 3/2 ?? Simplifying gives product- (1 - 1/n^2)

Saket Joshi - 6 years, 6 months ago

Log in to reply

Write out the product (not in pi form) with each term as ( n 1 ) ( n + 1 ) n 2 \frac{(n-1)(n+1)}{n^{2}} . You will see that eventually, the terms cancel each other out and the only remaining term is n 1 n \frac{n-1}{n} . Substituting in n = 2 n = 2 gives 1 2 \frac{1}{2} as required.

Alternatively, we can try to figure out a partial product. It turns out that multiply from n = 2 n = 2 to m m gives m + 1 2 m \frac{m+1}{2m} . Using L'Hopital as m m \rightarrow \infty easily gives 1 2 \frac{1}{2} .

Jake Lai - 6 years, 6 months ago
Jake Lai
Nov 30, 2014

First, we write out the given fraction.

A B = a = 2 1 1 a 3 b = 1 1 + 1 b ( b + 1 ) \frac{A}{B} = \frac{\prod_{a=2}^{\infty} 1-\frac{1}{a^{3}}}{\prod_{b=1}^{\infty} 1+\frac{1}{b(b+1)}}

Since these are products, we can combine the numerator and denominator to give a single product from n = 2 n = 2 to \infty by factoring out the first term of B B .

A B = 2 3 n = 2 1 1 n 3 1 + 1 n ( n + 1 ) \frac{A}{B} = \frac{2}{3} \prod_{n=2}^{\infty} \frac{1-\frac{1}{n^{3}}}{1+\frac{1}{n(n+1)}}

We do further simplifying.

A B = 2 3 n = 2 ( n 3 1 ) ( n ( n + 1 ) ) n 3 ( n ( n + 1 ) + 1 ) \frac{A}{B} = \frac{2}{3} \prod_{n=2}^{\infty} \frac{(n^{3}-1)(n(n+1))}{n^{3}(n(n+1)+1)}

= 2 3 n = 2 n ( n 1 ) ( n 2 + n + 1 ) ( n + 1 ) n 3 ( n 2 + n + 1 ) = \frac{2}{3} \prod_{n=2}^{\infty} \frac{n(n-1)(n^{2}+n+1)(n+1)}{n^{3}(n^{2}+n+1)}

= 2 3 n = 2 ( n 1 ) ( n + 1 ) n 1 = \frac{2}{3} \prod_{n=2}^{\infty} \frac{(n-1)(n+1)}{n^{1}}

From this, we note that terms cancel out until we are left with n 1 n = 1 2 \frac{n-1}{n} = \frac{1}{2} .

Finally,

A B = 2 3 ( 1 2 ) = 1 3 \frac{A}{B} = \frac{2}{3}(\frac{1}{2}) = \frac{1}{3} .

m = 1 , n = 3 100 m + n = 103 m = 1, n = 3 \rightarrow 100m+n = \boxed{103}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...