Plain trigo

Geometry Level 3

sin θ + 3 cos θ = 2.05 \large \sin\theta + \sqrt{3}\cos\theta = 2.05

Find the number of solutions of the equation above.

1 1 2 2 0 0 \infty

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Ashish Menon
Jul 9, 2016

Relevant wiki: Trigonometric Equations - R method

The maximum value that the expression sin θ + 3 cos θ \sin\theta + \sqrt{3}\cos\theta can give is 1 2 + 3 2 = 1 + 3 = 4 = 2 \sqrt{{1}^2 + {\sqrt{3}}^2}\\ = \sqrt{1+3}\\ = \sqrt{4}\\ = 2 .

So, this expression has no \color{#3D99F6}{\boxed{\text{no}}} solution which yields 2.05 > 2 2.05 > 2 as the answer.

You can prove this without using the formula , \text{You can prove this without using the formula , }

f ( θ ) = sin θ + 3 cos θ f ( θ ) = 2 ( sin θ 1 2 + 3 2 cos θ ) f ( θ ) = 2 sin ( θ + π 3 ) f ( θ ) Max. = 2 f( \theta ) = \sin{\theta}+\sqrt{3}\cos{\theta} \\ f(\theta) = 2 \left( \sin{ \theta }\frac12+\frac{\sqrt{3}}{2}\cos{\theta} \right) \\ f(\theta) = 2 \sin{ \left( \theta+\frac{\pi}{3} \right) } \\ f(\theta)_{\text{Max.}} = 2

Sabhrant Sachan - 4 years, 11 months ago

Log in to reply

Yes, thats correct!

Ashish Menon - 4 years, 11 months ago
Chew-Seong Cheong
Jul 11, 2016

sin θ + 3 cos θ = 2.05 2 ( 1 2 sin θ + 3 2 cos θ ) = 2.05 2 ( sin θ cos π 3 + sin π 3 cos θ ) = 2.05 2 sin ( θ + π 3 ) = 2.05 \begin{aligned} \sin \theta + \sqrt 3 \cos \theta & = 2.05 \\ 2 \left(\frac 12 \sin \theta + \frac {\sqrt 3}2 \cos \theta \right) & = 2.05 \\ 2 \left(\sin \theta \cos \frac \pi 3 + \sin \frac \pi 3 \cos \theta \right) & = 2.05 \\ 2 \sin \left(\theta + \frac \pi 3 \right) & = 2.05 \end{aligned}

We note that the LHS has a maximum of 2, which is less than 2.05. Therefore, the LHS is always less than and never equal to the RHS and there is 0 \boxed{0} solution to the equation.

Hung Woei Neoh
Jul 11, 2016

Since the range of θ \theta is not stated, and the equation only has trigonometric functions, we know that the answer is either 0 0 or \infty

sin θ + 3 cos θ = 2.05 \sin \theta + \sqrt{3}\cos \theta = 2.05

Let f ( x ) = sin θ + 3 cos θ f(x)=\sin \theta + \sqrt{3}\cos \theta

f ( x ) = cos θ 3 sin θ f'(x)=\cos \theta - \sqrt{3}\sin \theta

The maximum value of f ( x ) f(x) occurs when f ( x ) = 0 f'(x)=0 :

cos θ 3 sin θ = 0 cos θ = 3 sin θ sin θ cos θ = 1 3 tan θ = 1 3 θ = ( 30 + 180 n ) \cos \theta - \sqrt{3}\sin \theta=0\\ \cos \theta = \sqrt{3}\sin \theta\\ \dfrac{\sin \theta}{\cos \theta} = \dfrac{1}{\sqrt{3}}\\ \tan \theta = \dfrac{1}{\sqrt{3}}\\ \theta = (30+180n)^{\circ}

where n n is an integer.

If n |n| is even ( θ \theta in quadrant I)

f ( x ) = sin ( 30 + 180 n ) + 3 cos ( 30 + 180 n ) = 1 2 + 3 ( 3 2 ) = 1 2 + 3 2 = 2 f(x) = \sin(30+180n)^{\circ} + \sqrt{3}\cos(30+180n)^{\circ} \\ =\dfrac{1}{2}+\sqrt{3}\left(\dfrac{\sqrt{3}}{2}\right)\\ =\dfrac{1}{2}+\dfrac{3}{2}\\ =2

If n |n| is odd ( θ \theta in quadrant III)

f ( x ) = sin ( 30 + 180 n ) + 3 cos ( 30 + 180 n ) = 1 2 + 3 ( 3 2 ) = 1 2 3 2 = 2 f(x) = \sin(30+180n)^{\circ} + \sqrt{3}\cos(30+180n)^{\circ} \\ =-\dfrac{1}{2}+\sqrt{3}\left(-\dfrac{\sqrt{3}}{2}\right)\\ =-\dfrac{1}{2}-\dfrac{3}{2}\\ =-2

(Note: For a better proof, do the second derivative test)

The range of f ( x ) f(x) is found to be 2 f ( x ) 2 -2\leq f(x) \leq 2 . From here, we can see that f ( x ) = 2.05 f(x)=2.05 is not achievable.

Therefore, there are 0 \boxed{0} solutions to this equation

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...