Play with functions 3

Algebra Level 4

If f ( x + y + 1 ) = ( f ( x ) + f ( y ) ) 2 f(x+y+1) = \left(\sqrt{f(x)} + \sqrt{f(y)}\right)^2 and f ( 0 ) = 1 f(0) =1 , find the sum of digits of f ( 2014 ) f(2014) .

Also try Play with functions 4


The answer is 19.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Preenu C Sasi
May 30, 2014

f ( 0 + 0 + 1 ) = ( f ( 0 ) + f ( 0 ) ) 2 f(0+0+1)=(\sqrt{f(0)}+\sqrt{f(0)})^2

so f ( 1 ) = 2 2 f(1)=2^2 . Similarly f ( n ) = ( n + 1 ) 2 f(n)=(n+1)^2 (can be proved by induction)

Adding to that:

201 5 2 = 4060225 2015^2=4060225

4 + 0 + 6 + 0 + 2 + 2 + 5 = 19 4+0+6+0+2+2+5=19

Anthony Ling - 6 years, 10 months ago

Log in to reply

wow amazing mathematics lol........

abdulmuttalib lokhandwala - 6 years, 10 months ago
Chew-Seong Cheong
May 30, 2018

Putting x = y x=y in f ( x + y + 1 ) = ( f ( x ) + f ( y ) ) 2 f(x+y+1) = \left(\sqrt{f(x)} + \sqrt{f(y)}\right)^2 , we have:

f ( 2 x + 1 ) = 4 f ( x ) Putting x = 0 f ( 1 ) = 4 f ( 0 ) = 4 Given that f ( 0 ) = 1 f ( 3 ) = 4 f ( 1 ) = 4 2 for x = 1 f ( 7 ) = 4 f ( 3 ) = 4 3 for x = 3 f ( 15 ) = 4 f ( 7 ) = 4 4 for x = 7 \begin{aligned} f(2x+1) & = 4f(x) & \small \color{#3D99F6} \text{Putting }x=0 \\ f(1) & = 4f(0) = 4 & \small \color{#3D99F6} \text{Given that }f(0) = 1 \\ f(3) & = 4f(1) = 4^2 & \small \color{#3D99F6} \text{for }x = 1 \\ f(7) & = 4f(3) = 4^3 & \small \color{#3D99F6} \text{for }x = 3 \\ f(15) & = 4f(7) = 4^4 & \small \color{#3D99F6} \text{for }x = 7 \end{aligned}

f ( 2 u 1 ) = 4 u where u is a non-negative integer. f ( x ) = 4 log 2 ( x + 1 ) Let x = 2 u 1 u = log 2 ( x + 1 ) = 2 2 log 2 ( x + 1 ) f ( x ) = ( x + 1 ) 2 \begin{aligned} \implies f(2^u-1) & = 4^u & \small \color{#3D99F6} \text{where }u \text{ is a non-negative integer.} \\ f(x) & = 4^{\log_2(x+1)} & \small \color{#3D99F6} \text{Let }x = 2^u - 1 \implies u = \log_2(x+1) \\ & = 2^{2\log_2(x+1)} \\ \implies f(x) & = (x+1)^2 \end{aligned}

Let us prove that f ( x ) = ( x + 1 ) 2 f(x)=(x+1)^2 is true for all real x x .

f ( x + y + 1 ) = ( f ( x ) + f ( y ) ) 2 Replace x and y with x 1 2 f ( x ) = 4 f ( x 1 2 ) = 4 ( x 1 2 1 ) 2 = ( x + 1 ) 2 \begin{aligned} f(x+y+1) & = \left(\sqrt{f(x)} + \sqrt{f(y)}\right)^2 & \small \color{#3D99F6} \text{Replace }x \text{ and }y \text{ with }\frac {x-1}2 \\ \implies f(x) & = 4f\left(\frac {x-1}2\right) \\ & = 4\left(\frac {x-1}2-1\right)^2 \\ & = (x+1)^2 \blacksquare \end{aligned}

Therefore, f ( 2014 ) = 201 5 2 = 4060225 f(2014) = 2015^2 = 4060225 and its sum of digits is 19 \boxed{19} .

Md Nazimul Islam
Jul 21, 2015

by inducation,we get f(n)=sqr(n+1).then f(2014)=sqr(2014+1)=4060225 ans:4+0+6+0+2+2+5=19

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...