Play with LIMITS

Calculus Level 2

For all positive integer n n , let a n a_n be defined as

a n = k = 1 n 2 n 1 + ( n 2 ( k 1 ) 2 n 2 k 2 ) 2 a_n = \sum_{k=1}^n \frac 2n \sqrt {1+\left( \sqrt { { n }^{ 2 }-\left( k-1 \right) ^{ 2 } } -\sqrt { { n }^{ 2 }-{ k }^{ 2 } } \right)^2}

Find lim n a n \displaystyle \left\lfloor \lim_{n \to \infty} a_n \right \rfloor .

Notation: \lfloor \cdot \rfloor denotes the floor function .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

L e t , r R + b e a n y e l e m e n t . L e t u s d e f i n e a f u n c t i o n , f : [ 0 , r ] [ 0 , r ] d e f i n e d b y , f ( x ) = r 2 x 2 n o w , l i m n a n = l i m n k = 1 n 2 n ( [ 1 + { n 2 ( k 1 ) 2 n 2 k 2 } 2 ] ) = 4 l i m n k = 1 n ( [ ( k 1 n r k n r ) 2 + { f ( k 1 n r ) f ( k n r ) } 2 ] ) 2 r = 2 π r 2 r = π H e n c e , l i m n a n = π = 3.14159265359... = 3 Let,\quad r\in { R }^{ + }\quad be\quad any\quad element.\\ Let\quad us\quad define\quad a\quad function,\quad f:\left[ 0,r \right] \rightarrow \left[ 0,r \right] \quad \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad defined\quad by,\quad f\left( x \right) =\sqrt { { r }^{ 2 }-{ x }^{ 2 } } \\ now,\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \\ \underset { n\longrightarrow \infty }{ lim } { a }_{ n }=\quad \underset { n\longrightarrow \infty }{ lim } \sum _{ k=1 }^{ n }{ \cfrac { 2 }{ n } \left( \sqrt { \left[ 1+{ \left\{ \sqrt { { n }^{ 2 }-\left( k-1 \right) ^{ 2 } } -\sqrt { { n }^{ 2 }-{ k }^{ 2 } } \right\} }^{ 2 } \right] } \right) } \\ \quad \quad \quad \quad \quad \quad =\quad \frac { 4\underset { n\longrightarrow \infty }{ lim } \sum _{ k=1 }^{ n }{ \left( \sqrt { \left[ { \left( \frac { k-1 }{ n } r-\frac { k }{ n } r \right) }^{ 2 }+{ \left\{ f\left( \frac { k-1 }{ n } r \right) -f\left( \frac { k }{ n } r \right) \right\} }^{ 2 } \right] } \right) } }{ 2r } \\ \quad \quad \quad \quad \quad \quad =\quad \frac { 2\pi r }{ 2r } \\ \quad \quad \quad \quad \quad \quad =\quad \pi \\ Hence,\quad \left\lfloor \underset { n\longrightarrow \infty }{ lim } { a }_{ n } \right\rfloor =\left\lfloor \pi \right\rfloor =\left\lfloor 3.14159265359... \right\rfloor =3

@Nilotpal Chakraborty , You do not need to put text in LaTex. It is difficult, not necessary look better and not a standard in Brilliant.org. Use \lim so that it is not in italic. You use too many parentheses.

Chew-Seong Cheong - 1 year, 7 months ago

Log in to reply

got it sir @Chew-Seong Cheong

Nilotpal Chakraborty - 1 year, 7 months ago

I think this is a picture of the solution, right.

Hana Wehbi - 1 year, 7 months ago

Log in to reply

@Hana Wehbi yes ma'am. As you let 'n' to tend infinity, total length of green lines will approximate yellow curve's length, thereby multiplying by 4 gives us the circumference of the circle of radius 'r' .

Nilotpal Chakraborty - 1 year, 7 months ago

Log in to reply

Ok, thanks.

Hana Wehbi - 1 year, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...