Play with sin

Geometry Level 2

2 sin 2 + 4 sin 4 + 6 sin 6 + + 180 sin 18 0 = ? 2 \sin 2^\circ + 4 \sin 4^\circ + 6 \sin 6^\circ + \cdots + 180 \sin 180^\circ =\ ?

90 90 90 cos 1 90 \cos 1^\circ 90 cot 1 90 \cot 1^\circ 90 sin 1 90 \sin 1^\circ

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
May 13, 2020

The given sum can be written as:

S = k = 1 90 2 k sin ( 2 k ) = k = 1 89 2 k sin ( 2 k ) Since sin 18 0 = 0 = k = 1 44 2 k sin ( 2 k ) + 90 sin 9 0 + k = 46 89 2 k sin ( 2 k ) = k = 1 44 2 k sin ( 2 k ) + 90 + k = 1 44 ( 180 2 k ) sin ( 18 0 2 k ) Note that sin ( 18 0 θ ) = sin θ = 180 k = 1 44 sin ( 2 k ) + 90 = 180 ( k = 1 22 sin ( 2 k ) + k = 23 44 sin ( 2 k ) ) + 90 = 180 ( k = 1 22 sin ( 2 k ) + k = 23 44 cos ( 9 0 2 k ) ) + 90 = 180 ( k = 1 22 sin ( 2 k ) + k = 1 22 cos ( 2 k ) ) + 90 By Euler’s formula: e θ i = cos θ + i sin θ = 180 ( ( k = 1 22 e 2 k i ) + ( k = 1 22 e 2 k i ) ) + 90 where ( ) is the imaginary part function = 180 ( ( e 2 i ( 1 e 4 4 i ) 1 e 2 i ) + ( k = 1 22 e 2 k i ) ) + 90 and ( ) , the real part function. = 180 ( ( e 2 4 i ( e 2 2 i e 2 2 i ) e 1 i ( e 1 i e 1 i ) + ( k = 1 22 e 2 k i ) ) + 90 = 180 ( ( ( cos 2 3 + i sin 2 3 ) sin 2 2 sin 1 ) + ( k = 1 22 e 2 k i ) ) + 90 = 180 ( ( cos 2 3 cos 6 8 + i sin 2 3 sin 2 2 sin 1 ) + ( k = 1 22 e 2 k i ) ) + 90 = 180 ( ( cos 4 5 + cos 9 1 + i ( cos 1 cos 4 5 ) 2 sin 1 ) + ( k = 1 22 e 2 k i ) ) + 90 = 90 ( cos 4 5 sin 1 + cos 1 cos 4 5 sin 1 ) + 90 = 90 cot 1 \begin{aligned} S & = \sum_{k=1}^\blue{90} 2k \sin (2k^\circ) = \sum_{k=1}^\red{89} 2k \sin (2k^\circ) & \small \blue{\text{Since }\sin 180^\circ=0} \\ & = \sum_{k=1}^{44} 2k \sin (2k^\circ) + 90 \sin 90^\circ + \sum_{k=46}^{89} 2k \sin (2k^\circ) \\ & = \sum_{k=1}^{44} 2k \sin (2k^\circ) + 90 + \sum_{k=1}^{44} (180-2k) \blue{\sin (180^\circ - 2k^\circ)} & \small \blue{\text{Note that }\sin (180^\circ - \theta) = \sin \theta} \\ & = 180 \sum_{k=1}^{44} \sin (2k^\circ) + 90 \\ & = 180 \left(\sum_{k=1}^{22} \sin (2k^\circ) + \sum_{k=23}^{44} \sin (2k^\circ) \right) + 90 \\ & = 180 \left(\sum_{k=1}^{22} \sin (2k^\circ) + \sum_{k=23}^{44} \cos (90^\circ - 2k^\circ) \right) + 90 \\ & = 180 \left(\sum_{k=1}^{22} \sin (2k^\circ) + \sum_{k=1}^{22} \cos (2k^\circ) \right) + 90 & \small \blue{\text{By Euler's formula: }e^{\theta i} = \cos \theta + i \sin \theta} \\ & = 180 \left(\Im \left(\sum_{k=1}^{22} e^{2k^\circ i} \right) + \Re \left(\sum_{k=1}^{22} e^{2k^\circ i} \right)\right) + 90 & \small \blue{\text{where } \Im (\cdot) \text{ is the imaginary part function}} \\ & = 180 \left(\Im \left(\frac {e^{2^\circ i}(1-e^{44^\circ i})}{1-e^{2^\circ i}} \right) + \Re \left(\sum_{k=1}^{22} e^{2k^\circ i} \right)\right) + 90 & \small \blue{\text{and } \Re (\cdot) \text{, the real part function.}} \\ & = 180 \left(\Im \left(\frac {e^{24^\circ i}(e^{-22^\circ i}-e^{22^\circ i})}{e^{1^\circ i}(e^{-1^\circ i}-e^{1^\circ i}} \right) + \Re \left(\sum_{k=1}^{22} e^{2k^\circ i} \right)\right) + 90 \\ & = 180 \left(\Im \left(\frac {(\cos 23^\circ + i\sin 23^\circ)\sin 22^\circ}{\sin 1^\circ} \right) + \Re \left(\sum_{k=1}^{22} e^{2k^\circ i} \right)\right) + 90 \\ & = 180 \left(\Im \left(\frac {\cos 23^\circ \cos 68^\circ + i\sin 23^\circ\sin 22^\circ}{\sin 1^\circ} \right) + \Re \left(\sum_{k=1}^{22} e^{2k^\circ i} \right)\right) + 90 \\ & = 180 \left(\Im \left(\frac {\cos 45^\circ + \cos 91^\circ + i(\cos 1^\circ - \cos 45^\circ)}{2 \sin 1^\circ} \right) + \Re \left(\sum_{k=1}^{22} e^{2k^\circ i} \right)\right) + 90 \\ & = 90 \left(\frac {\cos 45^\circ - \sin 1^\circ + \cos 1^\circ - \cos 45^\circ}{\sin 1^\circ} \right) + 90 \\ & = \boxed{90\cot 1^\circ} \end{aligned}


Reference: Euler's formula

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...