This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
The given sum can be written as:
S = k = 1 ∑ 9 0 2 k sin ( 2 k ∘ ) = k = 1 ∑ 8 9 2 k sin ( 2 k ∘ ) = k = 1 ∑ 4 4 2 k sin ( 2 k ∘ ) + 9 0 sin 9 0 ∘ + k = 4 6 ∑ 8 9 2 k sin ( 2 k ∘ ) = k = 1 ∑ 4 4 2 k sin ( 2 k ∘ ) + 9 0 + k = 1 ∑ 4 4 ( 1 8 0 − 2 k ) sin ( 1 8 0 ∘ − 2 k ∘ ) = 1 8 0 k = 1 ∑ 4 4 sin ( 2 k ∘ ) + 9 0 = 1 8 0 ( k = 1 ∑ 2 2 sin ( 2 k ∘ ) + k = 2 3 ∑ 4 4 sin ( 2 k ∘ ) ) + 9 0 = 1 8 0 ( k = 1 ∑ 2 2 sin ( 2 k ∘ ) + k = 2 3 ∑ 4 4 cos ( 9 0 ∘ − 2 k ∘ ) ) + 9 0 = 1 8 0 ( k = 1 ∑ 2 2 sin ( 2 k ∘ ) + k = 1 ∑ 2 2 cos ( 2 k ∘ ) ) + 9 0 = 1 8 0 ( ℑ ( k = 1 ∑ 2 2 e 2 k ∘ i ) + ℜ ( k = 1 ∑ 2 2 e 2 k ∘ i ) ) + 9 0 = 1 8 0 ( ℑ ( 1 − e 2 ∘ i e 2 ∘ i ( 1 − e 4 4 ∘ i ) ) + ℜ ( k = 1 ∑ 2 2 e 2 k ∘ i ) ) + 9 0 = 1 8 0 ( ℑ ( e 1 ∘ i ( e − 1 ∘ i − e 1 ∘ i e 2 4 ∘ i ( e − 2 2 ∘ i − e 2 2 ∘ i ) ) + ℜ ( k = 1 ∑ 2 2 e 2 k ∘ i ) ) + 9 0 = 1 8 0 ( ℑ ( sin 1 ∘ ( cos 2 3 ∘ + i sin 2 3 ∘ ) sin 2 2 ∘ ) + ℜ ( k = 1 ∑ 2 2 e 2 k ∘ i ) ) + 9 0 = 1 8 0 ( ℑ ( sin 1 ∘ cos 2 3 ∘ cos 6 8 ∘ + i sin 2 3 ∘ sin 2 2 ∘ ) + ℜ ( k = 1 ∑ 2 2 e 2 k ∘ i ) ) + 9 0 = 1 8 0 ( ℑ ( 2 sin 1 ∘ cos 4 5 ∘ + cos 9 1 ∘ + i ( cos 1 ∘ − cos 4 5 ∘ ) ) + ℜ ( k = 1 ∑ 2 2 e 2 k ∘ i ) ) + 9 0 = 9 0 ( sin 1 ∘ cos 4 5 ∘ − sin 1 ∘ + cos 1 ∘ − cos 4 5 ∘ ) + 9 0 = 9 0 cot 1 ∘ Since sin 1 8 0 ∘ = 0 Note that sin ( 1 8 0 ∘ − θ ) = sin θ By Euler’s formula: e θ i = cos θ + i sin θ where ℑ ( ⋅ ) is the imaginary part function and ℜ ( ⋅ ) , the real part function.
Reference: Euler's formula