Play with the Base

Calculus Level 4

Let p ( n ) p(n) be the number of digits when 8 n 8^n is written in base 6 6 , and let q ( n ) q(n) be the number of digits when 6 n 6^n is written in the base 4 4 . For example, 8 2 8^2 in base 6 6 is 144 144 , hence p ( 2 ) = 3 p(2) = 3 . Then lim n p ( n ) q ( n ) n 2 \lim_{n \to \infty} \frac{ p(n)q(n)}{n^2} :

4 3 \frac{4}{3} 1 1 \frac{1}{1} 3 2 \frac{3}{2} 2 1 \frac{2}{1}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Zico Quintina
May 16, 2018

Suppose the number N N has a k k -digit representation in base b b . Then b k 1 N < b k b^{k - 1} \le N < b^k , so k 1 log b N < k k - 1 \le \log_b N < k .

The last inequality implies that k 1 = log b N k - 1 = \lfloor \log_b N \rfloor , i.e. k = log b N + 1 k = \lfloor \log_b N \rfloor + 1 .

Thus p ( n ) = log 6 8 n + 1 = n log 6 8 + 1 p(n) = \lfloor \log_6 8^n \rfloor + 1 = \lfloor n \log_6 8 \rfloor + 1 and q ( n ) = log 4 6 n + 1 = n log 4 6 + 1 q(n) = \lfloor \log_4 6^n \rfloor + 1 = \lfloor n \log_4 6 \rfloor + 1 . Then

lim n p ( n ) q ( n ) n 2 = lim n ( n log 6 8 + 1 ) ( n log 4 6 + 1 ) n 2 = lim n ( n log 6 8 + 1 n ) ( n log 4 6 + 1 n ) = lim n ( n log 6 8 n + 1 n ) ( n log 4 6 n + 1 n ) = ( log 6 8 ) ( log 4 6 ) [**See note below**] = log 4 8 = 3 2 \begin{aligned} \lim_{n\rightarrow \infty} \dfrac{p(n)q(n)}{n^2} &= \lim_{n\rightarrow \infty} \dfrac{(\lfloor n \log_6 8 \rfloor +1)(\lfloor n \log_4 6 \rfloor +1)}{n^2} \\ \\ &= \lim_{n\rightarrow \infty} \left( \dfrac{\lfloor n \log_6 8 \rfloor +1}{n} \right) \left( \dfrac{\lfloor n \log_4 6 \rfloor +1}{n} \right) \\ \\ &= \lim_{n\rightarrow \infty} \left( \dfrac{\lfloor n \log_6 8 \rfloor}{n} + \dfrac{1}{n} \right) \left( \dfrac{\lfloor n \log_4 6 \rfloor}{n} + \dfrac{1}{n} \right) \\ \\ &= (\log_6 8) (\log_4 6) \qquad \color{#D61F06} \small \text{[**See note below**]} \\ \\ &= \log_4 8 = \boxed{\dfrac{3}{2}} \end{aligned}

Note: in the above we made use of the fact that lim n n x n = x \displaystyle\lim_{n\rightarrow \infty} \dfrac{\lfloor nx \rfloor}{n} = x . To see that this is true, first note that x = x x \lfloor x \rfloor = x - \langle x \rangle , where 0 x < 1 0 \le \langle x \rangle < 1 . Then

lim n n x n = lim n n x n x n = x lim n n x n = x [since 0 n x < 1 ] \begin{aligned} \displaystyle\lim_{n\rightarrow \infty} \dfrac{\lfloor nx \rfloor}{n} &= \displaystyle\lim_{n\rightarrow \infty} \dfrac{nx - \langle nx \rangle}{n} \\ &= x - \displaystyle\lim_{n\rightarrow \infty} \dfrac{\langle nx \rangle}{n} \quad = x \qquad \color{#3D99F6} \small \text{[since } 0 \le \langle nx \rangle < 1] \end{aligned}

HATS OFF!!!!!! Incredible mind blowing solution.....this is a qs of isi bstat mcq of 2018.....Great!!!!! And obv +1!!!!!

rajdeep brahma - 3 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...