Play with the numbers!

a + b + c + d + e = 120 \large a + b + c + d + e = 120

Let a , b , c , d , e a, b, c, d, e be positive integers which satisfy the equation above such that a 1 a \geq 1 , b 2 b \geq 2 , c 3 c \geq 3 , d 4 d \geq 4 and e 5 e \geq 5 . Then find the number of possible ordered 5-tuples ( a , b , c , d , e ) (a,b,c,d,e) .


The answer is 5563251.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ashish Menon
Jul 25, 2016

Let a = a + 1 a = a' + 1 , so a 0 a' \geq 0 .
Let b = b + 2 b = b' + 2 , so b 0 b' \geq 0 .
Let c = c + 3 c = c' + 3 , so c 0 c' \geq 0 .
Let d = d + 4 d = d' + 4 , so d 0 d' \geq 0 .
Let e = e + 5 e = e' + 5 , so e 0 e' \geq 0 .


So, a + 1 + b + 2 + c + 3 + d + 4 + e + 5 = 120 a + b + c + d + e = 105 a' + 1 + b' + 2 + c' + 3 + d' + 4 + e' + 5 = 120\\ a' + b' + c' + d' + e' = 105

Now, the number of ways of choosing ordered 5-tuples ( a , b , c , d , e ) (a', b', c', d', e') is simply 105 + 5 1 C 5 1 = 109 C 4 = 5563251 ^{105+5-1}C_{5-1}\\ = ^{109}C_4\\ = \color{#3D99F6}{\boxed{5563251}}

Can you plz explain solution thx

Ashish Sacheti - 4 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...