An algebra problem by prashant goyal

Algebra Level 2

then what is the value of f(x) at x=1/2?

1 1.5 2 1.7

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Hassan Raza
Aug 1, 2014

G i v e n t h a t 1 + x + x 2 + x 3 + . . . . . . . . . . . . . . . = f ( x ) . . . . . . . . . . . . ( i ) P u t t i n g x = 1 2 i n ( i ) x = 1 2 w e h a v e f ( x ) = 1 + 1 2 + 1 4 + 1 8 + . . . . . . . . . . . . . . . . . . . . . . . M u l t i p l y i n g b o t h s i d e s b y " 2 " w e g e t 2 f ( x ) = 2 + 1 2 + 1 4 + 1 8 + . . . . . . . . . . . . . . . . . . . . . . . o r 2 f ( x ) = 2 + f ( x ) f ( x ) = 1 + 1 2 + 1 4 + 1 8 + . . . . . . . . . . . . . . . . . . . . . . . o r 2 f ( x ) f ( x ) = 2 o r f ( x ) = 2 Given\quad that\\ \qquad \qquad 1+{ x }+{ x }^{ 2 }+{ x }^{ 3 }+\quad ...............\quad =f(x)\quad ............\quad (i)\\ Putting\quad \boxed { x=\frac { 1 }{ 2 } } \quad in\quad (i)\quad \quad \quad \quad \quad \because \quad x=\frac { 1 }{ 2 } \\ we\quad have\quad \\ \qquad \qquad f(x)=\quad 1+\frac { 1 }{ 2 } +\frac { 1 }{ 4 } +\frac { 1 }{ 8 } +\quad .......................\\ Multiplying\quad both\quad sides\quad by\quad "2"\\ we\quad get\\ \qquad \qquad 2f(x)=\quad 2+\frac { 1 }{ 2 } +\frac { 1 }{ 4 } +\frac { 1 }{ 8 } +\quad .......................\\ or\quad \quad \quad \quad 2f(x)=\quad 2+f(x)\\ \qquad \qquad \boxed { \because f(x)=\quad 1+\frac { 1 }{ 2 } +\frac { 1 }{ 4 } +\frac { 1 }{ 8 } +\quad ....................... } \\ or\quad 2f(x)-f(x)=2\\ or\quad f(x)=\boxed { 2 } \\ \qquad

the terms are in gp with r=x=1/2. the sum to infinity in a gp where -1<r<1=a/(1-r). substituting a=1, r=1/2, we get 2 as the answer. Nice sum.

Dhruv G - 6 years, 10 months ago

Log in to reply

But I think I did well

Hassan Raza - 6 years, 10 months ago
Dieuler Oliveira
Jul 30, 2014

Clearly f ( x ) f(x) is a GP with ratio x x (if x < 1 |x|<1 ) then: f ( x ) = 1 1 x f(x)=\frac{1}{1-x} f ( 1 2 ) = 1 1 1 2 f\left(\frac{1}{2}\right)=\frac{1}{1-\frac{1}{2}} f ( 1 2 ) = 2 f\left(\frac{1}{2}\right)=2

Did the same

Rama Devi - 6 years ago
Chew-Seong Cheong
Aug 12, 2014

f ( x ) = 1 + x + x 2 + x 3 + . . . = n = 0 x n f\left( x \right) = 1 + x + x^2 + x^3 + ... = \sum_{n=0}^\infty{x^n} So f ( x ) f(x) is a geometric progression and its value is given by: n = 0 x n = 1 1 x \sum_{n=0}^\infty{x^n}=\cfrac{1}{1-x} Since x = 1 2 x=\frac{1}{2} , therefore: f ( 1 2 ) = 1 1 1 2 = 2 f(\frac{1}{2}) = \cfrac{1}{1-\frac{1}{2}} = \boxed{2}

William Isoroku
Aug 5, 2014

Just use the sum of infinite geometric sequence formula for the x's. Then add 1 to the result.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...