Playing hide and seek with a b c abc

Algebra Level 3

Let a , b , c a,b,c positive real numbers so that: a ( b + c ) = 152 a(b+c)=152 b ( a + c ) = 162 b(a+c)=162 c ( a + b ) = 170 c(a+b)=170

Find the value of a b c abc .


The answer is 720.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Paola Ramírez
Jul 21, 2015

a ( b + c ) + b ( a + c ) + c ( a + b ) = 2 a b + 2 b c + 2 a c = 484 a b + b c + a c = 242 a(b+c)+b(a+c)+c(a+b)=2ab+2bc+2ac=484 \Rightarrow ab+bc+ac=242

a b + b c + a c a ( b + c ) = b c = 242 152 = 90 ab+bc+ac-a(b+c)=bc=242-152=90

a b + b c + a c b ( a + c ) = a c = 242 162 = 80 ab+bc+ac-b(a+c)=ac=242-162=80

a b + b c + a c c ( a + b ) = a b = 242 170 = 72 ab+bc+ac-c(a+b)=ab=242-170=72

a b × a c × b c = ( a b c ) 2 = 90 × 80 × 72 a b c = 90 × 80 × 72 = 720 \Rightarrow ab\times ac\times bc=(abc)^2=90\times80\times 72 \therefore abc=\sqrt{90\times80\times72}=\boxed{720}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...