Playing with 2018 in the soup

Calculus Level 3

( 2018 + 1 2018 2 ) n = 0 ( 1 2018 ) n ( cos ( n π 4 ) + sin ( n π 4 ) ) = ? \displaystyle \left ( 2018 + \frac{1}{2018} - \sqrt{2} \right) \sum_{n = 0}^{\infty} \left(\frac{1}{2018}\right)^n \left (\cos \left(\frac{n \pi}{4}\right) + \sin \left(\frac{n \pi}{4}\right) \right )= ?


The answer is 2018.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

S = ( 2018 + 1 2018 2 ) n = 0 ( 1 2018 ) n ( cos ( n π 4 ) + sin ( n π 4 ) ) = ( 2018 + 1 2018 2 ) n = 0 2 201 8 n sin ( ( n + 1 ) π 4 ) By Euler’s formula: e θ i = cos θ + i sin θ = ( 2018 + 1 2018 2 ) n = 0 2 201 8 n ( e n + 1 4 π i ) the imaginary part ( e θ i ) = sin θ = ( 2018 + 1 2018 2 ) 2 ( e π 4 i n = 0 ( e π 4 i 2018 ) n ) = ( 2018 + 1 2018 2 ) 2 ( e π 4 i 1 e π 4 i 2018 ) = ( 2018 + 1 2018 2 ) 2 ( cos π 4 + i sin π 4 1 cos π 4 + i sin π 4 2018 ) = ( 2018 + 1 2018 2 ) 2018 2 ( 1 + i 2018 2 1 i ) = ( 2018 + 1 2018 2 ) 2018 2 ( ( 1 + i ) ( 2018 2 1 + i ) ( 2018 2 1 i ) ( 2018 2 1 + i ) ) = ( 2018 + 1 2018 2 ) 2018 2 ( 2018 2 2 + 2018 2 i 2 ( 201 8 2 ) 2 ( 2018 2 ) + 2 ) = ( 2018 + 1 2018 2 ) ( 2 ( 201 8 2 ) 2 ( 201 8 2 ) 2 ( 2018 2 ) + 2 ) = ( 2018 + 1 2018 2 ) ( 2018 2018 2 + 1 2018 ) = 2018 \begin{aligned} S & = \left(2018+\frac 1{2018}-\sqrt 2\right) \sum_{n=0}^\infty \left(\frac 1{2018}\right)^n \left(\cos \left(\frac {n \pi}4\right)+\sin \left(\frac {n \pi}4\right)\right) \\ & = \left(2018+\frac 1{2018}-\sqrt 2\right) \sum_{n=0}^\infty \frac {\sqrt 2}{2018^n} \color{#3D99F6} \sin \left(\frac {(n+1)\pi}4\right) & \small \color{#3D99F6} \text{By Euler's formula: }e^{\theta i} = \cos \theta + i\sin \theta \\ & = \left(2018+\frac 1{2018}-\sqrt 2\right) \sum_{n=0}^\infty \frac {\sqrt 2}{2018^n} \color{#3D99F6} \Im \left(e^{\frac {n+1}4 \pi i}\right) & \small \color{#3D99F6} \implies \text{the imaginary part }\Im \left(e^{\theta i}\right) = \sin \theta \\ & = \left(2018+\frac 1{2018}-\sqrt 2\right) \sqrt 2 \Im \left(e^{\frac \pi 4 i} \sum_{n=0}^\infty \left(\frac {e^{\frac \pi 4 i}}{2018} \right)^n \right) \\ & = \left(2018+\frac 1{2018}-\sqrt 2\right) \sqrt 2 \Im \left(\frac {e^{\frac \pi 4 i}}{1- \frac {e^{\frac \pi 4i}}{2018}} \right) \\ & = \left(2018+\frac 1{2018}-\sqrt 2\right) \sqrt 2 \Im \left(\frac {\cos \frac \pi 4 + i\sin \frac \pi 4}{1- \frac {\cos \frac \pi 4 + i\sin \frac \pi 4}{2018}} \right) \\ & = \left(2018+\frac 1{2018}-\sqrt 2\right) 2018 \sqrt 2 \Im \left(\frac {1+ i}{2018\sqrt 2 - 1-i} \right) \\ & = \left(2018+\frac 1{2018}-\sqrt 2\right) 2018 \sqrt 2 \Im \left(\frac {(1+ i)(2018\sqrt 2 - 1+i)}{(2018\sqrt 2 - 1-i)(2018\sqrt 2 - 1+i)} \right) \\ & = \left(2018+\frac 1{2018}-\sqrt 2\right) 2018 \sqrt 2 \Im \left(\frac {2018\sqrt 2 - 2+ 2018\sqrt 2 i}{2(2018^2) - 2(2018\sqrt 2)+2} \right) \\ & = \left(2018+\frac 1{2018}-\sqrt 2\right) \left(\frac {2(2018^2)}{2(2018^2) - 2(2018\sqrt 2)+2} \right) \\ & = \left(2018+\frac 1{2018}-\sqrt 2\right) \left(\frac {2018}{2018 - \sqrt 2+\frac 1{2018}} \right) \\ & = \boxed{2018} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...