Playing with a , b a,b and c c

Algebra Level 3

If 1 a + 1 b + 1 c = 1 a + b + c \dfrac 1a + \dfrac 1b + \dfrac 1c = \dfrac 1{a+b+c} , find ( a + b ) ( a + c ) ( b + c ) (a+b)(a+c)(b+c) .

1 -1 0 0 2 2 1 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

If 1 a + 1 b + 1 c = 1 a + b + c \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{1}{a+b+c} , then the left side is simplified to:

a b + a c + b c a b c = 1 a + b + c \frac{ab+ac+bc}{abc} = \frac{1}{a+b+c}

Cross-multiplying gives:

( a + b + c ) ( a b + a c + b c ) = a b c (a+b+c)(ab+ac+bc) = abc

Now:

( a + b ) ( a + c ) ( b + c ) = a 2 b + a 2 c + a b 2 + a c 2 + b 2 c + b c 2 + 2 a b c = ( a 2 b + a 2 c + a b 2 + a c 2 + b 2 c + b c 2 + 3 a b c ) a b c = ( a + b + c ) ( a b + a c + b c ) a b c \begin{aligned} (a+b)(a+c)(b+c) &= a^{2}b + a^{2}c + ab^{2} + ac^{2} + b^{2}c + bc^{2} + 2abc \\ &= (a^{2}b + a^{2}c + ab^{2} + ac^{2} + b^{2}c + bc^{2} + 3abc) - abc \\ &= (a+b+c)(ab+ac+bc) - abc \end{aligned}

Since ( a + b + c ) ( a b + a c + b c ) = a b c (a+b+c)(ab+ac+bc) = abc , then:

( a + b ) ( a + c ) ( b + c ) = 0 (a+b)(a+c)(b+c) = 0

as per the answer.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...