Playing with circles and triangles

Calculus Level 5

In a unit circle with centre O O two points A A and B B are taken on the circumference of the cirlce. Then the inradius of the triangle O A B OAB is r r . If the maximum value of r r is α \alpha , what is 1000 α \lfloor 1000\alpha \rfloor ?


The answer is 300.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Deepanshu Gupta
Oct 26, 2014

Fig Fig

According to figure Let inradius of triangle OAB is 'r'

r = Δ s r = O C × A B 2 A B + O A + O B 2 r = 2 cos θ sin θ 2 + 2 cos θ ( 1 ) r=\frac { \Delta }{ s } \\ \\ r\quad =\quad \frac { \frac { OC\times AB }{ 2 } }{ \frac { AB+OA+OB }{ 2 } } \\ \\ r\quad =\quad \quad \frac { 2\cos { \theta } \sin { \theta } }{ 2+2\cos { \theta } } \quad \quad \longrightarrow \quad (1) .

Now For Maximum "r"

d r d θ = 0 \frac { dr }{ d\theta } =0 .

cos 3 θ + 2 cos 2 θ 1 = 0 cos θ = 1 × ( r e j e c t e d ) o r cos θ = 5 1 2 \Rightarrow \quad \cos ^{ 3 }{ \theta \quad } +\quad 2\cos ^{ 2 }{ \theta } \quad -1\quad =\quad 0\\ \\ \\ \cos { \theta } =\quad -1\quad \quad \times \quad (rejected)\\ \\ or\quad \\ \\ \quad \boxed { \cos { \theta } \quad =\quad \frac { \sqrt { 5 } -1 }{ 2 } } \\ .

Now by putting value of cos θ & sin θ \cos { \theta } \quad \& \quad \sin { \theta } . in expression of 'r' we get

r = . 3002 \Rightarrow \quad r\quad =\quad .3002 .

Q.E.D

I also got r to be 0.3002, but put in 3002 as the answer instead of 300

Aneesh Kundu - 6 years, 7 months ago
Joe Mansley
Jan 21, 2021

Let 2 θ = A O B 2\theta = \angle AOB .

Suppose the incircle touches O A OA at P P .

Then A P = s i n ( θ ) AP=sin(\theta) , so r = t a n ( θ ) O P = t a n ( θ ) ( 1 s i n ( θ ) ) r=tan(\theta)OP = tan(\theta)(1-sin(\theta)) .

Then just differentiate and solve to get the maximum.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...