Playing with i i

Algebra Level 4

If b b is real such that b 4 + 1 b 4 = 6 b^4+\dfrac{1}{b^4} = 6 , find value of ( b + i b ) 16 \left(b+\dfrac{i}{b}\right)^{16} for i = 1 i = \sqrt{-1} .


The answer is 4096.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Chew-Seong Cheong
Apr 19, 2017

( b + i b ) 4 = b 4 + 4 b 2 i 6 4 i b 2 + 1 b 4 Note that b 4 + 1 b 4 = 6 = 4 i ( b 2 1 b 2 ) Raise both sides to the power of 4 ( b + i b ) 16 = 4 4 i 4 ( b 2 1 b 2 ) 4 = 4 4 [ ( b 2 1 b 2 ) 2 ] 2 = 4 4 [ b 4 2 + 1 b 4 ] 2 = 4 4 4 2 = 4096 \begin{aligned} \left(b+\frac ib \right)^4 & = {\color{#3D99F6}b^4} + 4b^2i - 6 - \frac {4i}{b^2} + {\color{#3D99F6}\frac 1{b^4}} & \small \color{#3D99F6} \text{Note that }b^4 + \frac 1{b^4} = 6 \\ & = 4i \left(b^2 - \frac 1{b^2} \right) & \small \color{#3D99F6} \text{Raise both sides to the power of 4} \\ \left(b+\frac ib \right)^{16} & = 4^4 i^4 \left(b^2 - \frac 1{b^2} \right)^4 \\ & = 4^4 \left[\left(b^2 - \frac 1{b^2} \right)^2\right]^2 \\ & = 4^4 \left[{\color{#3D99F6}b^4} - 2 + {\color{#3D99F6}\frac 1{b^4}} \right]^2 \\ & = 4^4 \cdot 4^2 \\ & = \boxed{4096} \end{aligned}

Note first that ( b + i b ) 16 = ( ( b + i b ) 4 ) 4 \left(b + \dfrac{i}{b}\right)^{16} = \left(\left(b + \dfrac{i}{b}\right)^{4}\right)^{4} .

Now upon expansion of the binomial, we have that

( b + i b ) 4 = b 4 + 4 b 3 × i b + 6 b 2 × ( i b ) 2 + 4 b × ( i b ) 3 + ( i b ) 4 = \left(b + \dfrac{i}{b}\right)^{4} = b^{4} + 4b^{3} \times \dfrac{i}{b} + 6b^{2} \times \left(\dfrac{i}{b}\right)^{2} + 4b \times \left(\dfrac{i}{b}\right)^{3} + \left(\dfrac{i}{b}\right)^{4} =

b 4 + 4 b 2 i 6 4 b 2 i + 1 b 4 = 4 i ( b 2 1 b 2 ) b^{4} + 4b^{2}i - 6 - \dfrac{4}{b^{2}}i + \dfrac{1}{b^{4}} = 4i\left(b^{2} - \dfrac{1}{b^{2}}\right) , since b 4 + 1 b 4 6 = 0 b^{4} + \dfrac{1}{b^{4}} - 6 = 0 .

Now ( b 2 1 b 2 ) 2 = b 4 + 1 b 4 2 = 6 2 = 4 \left(b^{2} - \dfrac{1}{b^{2}}\right)^{2} = b^{4} + \dfrac{1}{b^{4}} - 2 = 6 - 2 = 4 , so b 2 1 b 2 = ± 2 b^{2} - \dfrac{1}{b^{2}} = \pm 2 .

Thus ( b + i b ) 16 = ( 4 i × ( ± 2 ) ) 4 = ( ± 8 i ) 4 = 8 4 = 4096 \left(b + \dfrac{i}{b}\right)^{16} = (4i \times (\pm 2))^{4} = (\pm 8i)^{4} = 8^{4} = \boxed{4096} .

Wow! Did exactly the same!

Md Zuhair - 4 years, 1 month ago

Log in to reply

Haha That's good! The other way to do this is to calculate

( ( b + i b ) 2 ) 8 = ( b 2 1 b 2 + 2 i ) 8 = \left(\left(b + \dfrac{i}{b}\right)^{2}\right)^{8} = \left(b^{2} - \dfrac{1}{b^{2}} + 2i\right)^{8} =

( ± 2 + 2 i ) 8 = ( ± 2 2 e ± i π 4 ) 8 = 2 12 = 4096 (\pm 2 + 2i)^{8} = (\pm 2\sqrt{2}e^{\pm \frac{i\pi}{4}})^{8} = 2^{12} = 4096 .

Brian Charlesworth - 4 years, 1 month ago

b^4 + 1/b^4 = 6

b² - 1/b² = 2

b² + i²/b² = 2

Now, ( b + i/b ) ^16 = ( ( b + i/b )² )^8 . = ( b² + i²/b² + 2i )^8 . = ( 2 + 2i)^8 Through binomial expression, we get- . ( 2 + 2i )^8 = 2^8 * 2^4 . = 2^16 =4096

Anirudh Sreekumar
Apr 20, 2017

( b + i b ) 16 = ( i ( b i + i b ) ) 16 = ( b i + i b ) 16 As, ( i ) 16 = 1 Let, z = ( b i + i b ) z 2 2 = ( b 2 i + i b 2 ) ( z 2 2 ) 2 = ( b 4 + 1 b 4 ) + 2 = 4 ( b 4 + 1 b 4 ) = 6 Given z 2 = 2 ± 2 i We need to find z 16 z 16 = ( z 2 ) 8 = ( 2 ± 2 i ) 8 = ( 2 2 e ± i π 4 ) 8 = ( 2 12 e ± i 2 π ) = 2 12 = 4096 \begin{aligned}\left(b+\dfrac{i}{b}\right)^{16}&=\left(\sqrt{i}\left(\dfrac{b}{\sqrt{i}}+\dfrac{\sqrt{i}}{b}\right)\right)^{16}\\ &=\left(\dfrac{b}{\sqrt{i}}+\dfrac{\sqrt{i}}{b}\right)^{16}\hspace{5mm}\small\color{#3D99F6}\text{As, }(\sqrt{i})^{16}=1\\ \text{Let,}\\ z&=\left(\dfrac{b}{\sqrt{i}}+\dfrac{\sqrt{i}}{b}\right)\\ z^2-2&=\left(\dfrac{b^2}{i}+\dfrac{i}{b^2}\right)\\ (z^2-2)^2&=-\left(b^4+\dfrac{1}{b^4}\right)+2\\ &=-4\hspace{30mm}\small\color{#3D99F6}\left(b^4+\dfrac{1}{b^4}\right)=6 \text{ Given }\\ \implies z^2&=2\pm2i\\\\ \text{We need}&\text{ to find } z^{16}\\\\ z^{16}&=(z^2)^8=(2\pm2i)^8\\ &=\left(2\sqrt2\hspace{2mm} e^{\pm i\tfrac{\pi}{4}}\right)^8\\ &=\left(2^{12}\hspace{2mm} e^{\pm i2\pi}\right)\\ &=2^{12}\\ &=\color{#EC7300}\boxed{\color{#333333}4096}\end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...