Playing with e e and π \pi

Algebra Level 5

1 π = ? \large\sqrt[\pi]{-1} = ?

Which of the following values is/are possible values of the expression above?

Options:

\quad A. i π 2 \ \ \large \sqrt[\frac{\pi}{2}]{i}

\quad B. e i \ \ \large e^i

\quad C. e i π \ \ -e^{i\pi}

\quad D. π e i \ \ \pi^{ei}

D and C A and B A and C A B and C D C B

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Viki Zeta
Sep 30, 2016

e i π = 1 ( e i ) π = 1 e i = 1 1 π 1 π = e i ____________________________________ e i π 2 = i i π 2 = e i ____________________________________ 1 π = i π 2 = e i e^{i\pi} = -1 \\ (e^i)^\pi = -1 \\ e^i = -1^{\frac{1}{\pi}} \\ \sqrt[\pi]{-1} = e^i \\ \text{\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_} \\ e^{i\frac{\pi}{2}} = i \\ \sqrt[\frac{\pi}{2}]{i} = e^i \\ \text{\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_} \\ \boxed{\therefore \sqrt[\pi]{-1} = \sqrt[\frac{\pi}{2}]{i} = e^i}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...