Playing with graphs - (1)

Geometry Level 4

y 2 + 2 x y + 40 x = 400 y^{2}+2xy+40|x|=400

The above curve divides the plane into two regions. Then find the area of bounded region.


This is a submission to Problem Writing Party May 2016.
None of these 600 200 400 800

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let f ( x ) = y 2 + 2 x y + 40 x 400 f(x) = y^2 + 2xy + 40|x| - 400 f ( x ) = { y 2 + 2 x y + 40 x 400 for x 0 y 2 + 2 x y 40 x 400 for x < 0 \implies f(x) = \begin{cases} y^2 + 2xy + 40x - 400 & \text{for } x \ge 0 \\ y^2 + 2xy - 40x - 400 & \text{for } x < 0 \end{cases}

For x 0 x \ge 0 , the value of y y as a function of x x is given by:

y 2 + 2 x y + 40 x 400 = 0 y = 2 x ± 4 x 2 160 x + 1600 2 = x ± ( x 20 ) y = { 20 20 2 x \begin{aligned} y^2 + 2xy + 40x - 400 & = 0 \\ \implies y & = \frac{-2x \pm \sqrt{4x^2-160x+1600}}{2} \\ & = -x \pm (x - 20) \\ \implies y & = \begin{cases} -20 \\ 20 - 2x \end{cases} \end{aligned}

Similarly for x < 0 x < 0 :

y 2 + 2 x y 40 x 400 = 0 y = 2 x ± 4 x 2 + 160 x + 1600 2 = x ± ( x + 20 ) y = { 20 20 2 x \begin{aligned} y^2 + 2xy - 40x - 400 & = 0 \\ \implies y & = \frac{-2x \pm \sqrt{4x^2+160x+1600}}{2} \\ & = -x \pm (x + 20) \\ \implies y & = \begin{cases} 20 \\ -20 - 2x \end{cases} \end{aligned}

Therefore, f ( x ) f(x) are four lines { y = ± 20 y = 2 x ± 20 \begin{cases} y = \pm 20 \\ y = -2x \pm 20 \end{cases} and the bounded area is a parallelogram.

The vertexes of the parallelogram are { 2 x + 20 = ± 20 { ( 0 , 20 ) ( 20 , 20 ) 2 x 20 = ± 20 { ( 20 , 20 ) ( 0 , 20 ) \begin{cases} -2x+20 = \pm 20 & \implies \begin{cases} (0,20) \\ (20, -20) \end{cases} \\ -2x-20 = \pm 20 & \implies \begin{cases} (-20,20) \\ (0, -20) \end{cases} \end{cases}

The area of the parallelogram = 20 × 40 = 800 = 20 \times 40 = \boxed{800}

By graphing we get this | |gram points ( - 20,20), (0, 20), (0, - 20), (20, - 20). The base is 20. Height 20 - (- 20)=40.
So the area =20x40=800.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...