The above curve divides the plane into two regions. Then find the area of bounded region.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let f ( x ) = y 2 + 2 x y + 4 0 ∣ x ∣ − 4 0 0 ⟹ f ( x ) = { y 2 + 2 x y + 4 0 x − 4 0 0 y 2 + 2 x y − 4 0 x − 4 0 0 for x ≥ 0 for x < 0
For x ≥ 0 , the value of y as a function of x is given by:
y 2 + 2 x y + 4 0 x − 4 0 0 ⟹ y ⟹ y = 0 = 2 − 2 x ± 4 x 2 − 1 6 0 x + 1 6 0 0 = − x ± ( x − 2 0 ) = { − 2 0 2 0 − 2 x
Similarly for x < 0 :
y 2 + 2 x y − 4 0 x − 4 0 0 ⟹ y ⟹ y = 0 = 2 − 2 x ± 4 x 2 + 1 6 0 x + 1 6 0 0 = − x ± ( x + 2 0 ) = { 2 0 − 2 0 − 2 x
Therefore, f ( x ) are four lines { y = ± 2 0 y = − 2 x ± 2 0 and the bounded area is a parallelogram.
The vertexes of the parallelogram are ⎩ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎧ − 2 x + 2 0 = ± 2 0 − 2 x − 2 0 = ± 2 0 ⟹ { ( 0 , 2 0 ) ( 2 0 , − 2 0 ) ⟹ { ( − 2 0 , 2 0 ) ( 0 , − 2 0 )
The area of the parallelogram = 2 0 × 4 0 = 8 0 0