Playing with Graphs - 8

Calculus Level 4

Given that

{ f ( x ) = x g ( x ) = 1 f ( x ) h ( x ) = 2 g ( x ) L ( x ) = h ( x ) + h ( x ) \begin{cases} f (x) = x \\ g (x) = | 1 - f (x) | \\ h (x) = 2 - g (x) \\ L (x) = h (|x|) + | h (x) | \end{cases}

What is the number of points where L ( x ) L (x) is non-differentiable?


Wanna play with Graphs? Try more by clicking here
5 1 4 2 0 10 3 6

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Sabhrant Sachan
Jun 11, 2016

L ( x ) = h ( x ) + h ( x ) L ( x ) = 2 g ( x ) + 2 g ( x ) L ( x ) = 2 1 f ( x ) + 2 1 f ( x ) L ( x ) = 2 1 x + 2 1 x L(x)=h(|x|)+|h(x)| \\ L(x)=2-g(|x|)+|2-g(x)| \\ L(x)=2-|1-f(|x|)|+|2-|1-f(x)|| \\ L(x)=2-|1-|x||+|2-|1-x||


It is rare to use the Derivative to x , This is how it’s done Let , v = x v 2 = x 2 2 v d v d x = 2 x d v d x = x v d v d x = x x : 2nd Method : Use the defenition of x = x 2 f ( x ) = x 2 f ( x ) = 1 2 x 2 2 x f ( x ) = x x \text{It is rare to use the Derivative to } |x| , \text{This is how it's done} \\ \text{Let , } \quad v=|x| \implies v^2=x^2 \\ 2v\dfrac{dv}{dx}=2x \implies \dfrac{dv}{dx}=\dfrac{x}{v} \\ \boxed{\dfrac{dv}{dx}=\dfrac{x}{|x|}} \\ \text{: 2nd Method :} \\ \text{Use the defenition of } |x| = \sqrt{x^2} \\ f(x)=\sqrt{x^2} \implies f^{'}(x)=\dfrac{1}{2\sqrt{x^2}}\cdot2x \\ \boxed{f^{'}(x)=\dfrac{x}{|x|}}


Now we calculate the derivative of L ( x ) L ( x ) = 0 ( 1 x ) 1 x x x 1 + 2 1 x 2 1 x ( 1 x ) 1 x 1 L ( x ) = x ( 1 x ) x 1 x + ( 1 x ) ( 2 1 x ) 1 x 2 1 x Possible Points where Derivative is not defined : x = 1 , 0 , 1 , 3 LHD: Left hand derivative RHD: Right hand derivative x = 1 : LHD = lim x 1 v e L ( x ) = 0 , RHD = lim x 1 + v e L ( x ) = 0 x = 0 : LHD = lim x 0 v e L ( x ) = 0 , RHD = lim x 0 + v e L ( x ) = 2 x = 1 : LHD = lim x 1 v e L ( x ) = 2 , RHD = lim x 1 + v e L ( x ) = 2 x = 3 : LHD = lim x 3 v e L ( x ) = 2 , RHD = lim x 3 + v e L ( x ) = 0 Points where function is non-differentiable are : x = 0 , 1 , 3 \text{Now we calculate the derivative of } L(x) \\ L^{'}(x)=0-\dfrac{(1-|x|)}{|1-|x||}\cdot\dfrac{x}{|x|}\cdot -1+\dfrac{2-|1-x|}{|2-|1-x||}\cdot\dfrac{-(1-x)}{|1-x|}\cdot-1 \\ L^{'}(x)=\dfrac{x(1-|x|)}{|x|\cdot|1-|x||}+\dfrac{(1-x)\cdot(2-|1-x|)}{|1-x|\cdot|2-|1-x||} \\ \text{Possible Points where Derivative is not defined : } \quad x=-1,0,1,3 \\ \text{LHD: Left hand derivative} \\ \text{RHD: Right hand derivative} \\ x=-1 \quad : \quad \text{LHD }= \displaystyle\lim_{ x \to -1^{-ve} }L^{'}(x)=0 \quad , \quad \text{RHD }= \displaystyle\lim_{ x \to -1^{+ve} }L^{'}(x)=0 \\ x=0 \quad : \quad \text{LHD }= \displaystyle\lim_{ x \to 0^{-ve} }L^{'}(x)=0 \quad , \quad \text{RHD }= \displaystyle\lim_{ x \to 0^{+ve} }L^{'}(x)=2 \\ x=1 \quad : \quad \text{LHD }= \displaystyle\lim_{ x \to 1^{-ve} }L^{'}(x)=2 \quad , \quad \text{RHD }= \displaystyle\lim_{ x \to -1^{+ve} }L^{'}(x)=-2 \\ x=3 \quad : \quad \text{LHD }= \displaystyle\lim_{ x \to 3^{-ve} }L^{'}(x)=-2 \quad , \quad \text{RHD }= \displaystyle\lim_{ x \to 3^{+ve} }L^{'}(x)=0 \\ \text{Points where function is non-differentiable are : } x=0,1,3


I loved This problem, Keep posting :) \text{I loved This problem, Keep posting :) }

In my opinion , this Question should belong to the class of Level 5 \text{In my opinion , this Question should belong to the class of Level 5 }

Nice solution :) It can be solved in a Much shorter way by the use of graph and simplifying function In by opinion :)

Aniket Sanghi - 5 years ago

Log in to reply

How will you make the graph of L ( x ) = 2 1 x + 2 1 x \text{How will you make the graph of } L(x)=2-|1-|x||+|2-|1-x||

Sabhrant Sachan - 5 years ago

Log in to reply

We can make the graph of both the equations separately , then getting idea of pts. Which may be and , writing equations and simplifying

Aniket Sanghi - 5 years ago

Yes I feel your is a bit short :) mine is a bit longer :)

Aniket Sanghi - 5 years ago
Aniket Sanghi
Jun 10, 2016

At x = 0,1,3 ..... :)

Why not -1?

Ujjwal Gupta - 5 years ago

Log in to reply

Please Look at my solution \text{Please Look at my solution }

Sabhrant Sachan - 5 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...