Playing with Limits

Calculus Level 3

{ A = lim n lim x 0 ( ( 1 + sin x 2 ) ( 1 + sin x 2 2 ) . . . ( 1 + sin x 2 n ) ) 1 x B = lim x 0 cos 2 ( 1 cos 2 ( 1 cos 2 ( . . . cos 2 ( x ) ) ) . . . ) sin ( π ( x + 4 2 ) x ) \begin{cases} A = \displaystyle \lim_{n \to \infty} \lim _{ x\rightarrow 0 }{ { \left( \left( { 1 }+\sin { \frac { x }{ 2 } } \right) \left( { 1 }+\sin { \frac { x }{ { 2 }^{ 2 } } } \right) ...\left( { 1 }+\sin { \frac { x }{ { 2 }^{ n } } } \right) \right) }^{ \frac { 1 }{ x } } } \\ \displaystyle B = \lim _{ x\rightarrow 0 }{ \frac { \cos ^{ 2 }{ \left( { 1 }-\cos ^{ 2 }{ \left( { 1 }-\cos ^{ 2 }{ \left(...\cos ^{ 2 }{ \left( x \right) } \right) } \right) ... } \right) } }{ \sin { \left( \frac { { \pi }\left( \sqrt { x+4 } -{ 2 } \right) }{ x } \right) } } } \end{cases}

For A A and B B as defined above, find the value of A + B + A + B \left\lfloor A \right\rfloor +\left\lfloor B \right\rfloor +\left\lfloor A+B \right\rfloor .

Notation: \lfloor \cdot \rfloor denotes the floor function .


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Mar 16, 2018

A = lim n lim x 0 k = 1 n ( 1 + sin x 2 k ) 1 x = lim n k = 1 n lim x 0 ( 1 + sin x 2 k ) 1 x = lim n k = 1 n lim x 0 ( 1 + 1 1 sin x 2 k ) 1 sin x 2 k × 1 x sin x 2 k Note that lim f ( x ) ( 1 + 1 f ( x ) ) f ( x ) = e = lim n k = 1 n e lim x 0 1 x × sin x 2 k = lim n k = 1 n exp ( lim x 0 1 2 k × sin x 2 k x 2 k ) where exp ( x ) = e x = lim n k = 1 n exp ( 1 2 k ) = lim n exp ( k = 1 n 1 2 k ) = lim n exp ( 1 1 2 n ) = e \begin{aligned} A & = \lim_{n \to \infty} \lim_{x \to 0} \prod_{k=1}^n \left(1+\sin \frac x{2^k}\right)^\frac 1x \\ & = \lim_{n \to \infty} \prod_{k=1}^n \lim_{x \to 0} \left(1+\sin \frac x{2^k}\right)^\frac 1x \\ & = \lim_{n \to \infty} \prod_{k=1}^n {\color{#3D99F6} \lim_{x \to 0} \bigg(1+\frac 1{\frac 1{\sin \frac x{2^k}}} \bigg)}^{{\color{#3D99F6}\frac 1{\sin \frac x{2^k}}} \times \frac 1x \sin \frac x{2^k}} & \small \color{#3D99F6} \text{Note that }\lim_{f(x) \to \infty} \left(1+\frac 1{f(x)}\right)^{f(x)} = e \\ & = \lim_{n \to \infty} \prod_{k=1}^n {\color{#3D99F6} e}^{\lim_{x\to 0} \frac 1x \times \sin \frac x{2^k}} \\ & = \lim_{n \to \infty} \prod_{k=1}^n \exp \left(\lim_{x\to 0} \frac 1{2^k} \times \frac {\sin \frac x{2^k}}{\frac x{2^k}}\right) & \small \color{#3D99F6} \text{where }\exp (x) = e^x \\ & = \lim_{n \to \infty} \prod_{k=1}^n \exp \left(\frac 1{2^k} \right) \\ & = \lim_{n \to \infty} \exp \left(\sum_{k=1}^n \frac 1{2^k} \right) \\ & = \lim_{n \to \infty} \exp \left(1-\frac 1{2^n} \right) \\ & = e \end{aligned}

B = lim x 0 cos 2 ( 1 cos 2 ( 1 cos 2 ( . . . cos 2 x ) . . . ) ) sin ( π ( x + 4 2 ) x ) = lim x 0 cos 2 ( 1 cos 2 ( 1 cos 2 ( . . . cos 2 x ) . . . ) ) lim x 0 sin ( π ( x + 4 2 ) x ) = 1 sin ( lim x 0 π ( x + 4 2 ) x ) A 0/0 case, L’H o ˆ pital’s rule applies. = 1 sin ( lim x 0 π 2 x + 4 1 ) Differentiate up and down w.r.t. x = 1 sin π 4 = 2 \begin{aligned} B & = \lim_{x \to 0} \frac {\cos^2\left(1-\cos^2 \left(1- \cos^2 \left(... \cos^2 x\right)...\right)\right)}{\sin \left(\frac {\pi(\sqrt{x+4}-2)}x\right)} \\ & = \frac {\lim_{x \to 0} \cos^2\left(1-\cos^2 \left(1- \cos^2 \left(... \cos^2 x\right)...\right)\right)}{\lim_{x \to 0} \sin \left(\frac {\pi(\sqrt{x+4}-2)}x\right)} \\ & = \frac 1{\sin \left({\color{#3D99F6}\lim_{x \to 0} \frac {\pi(\sqrt{x+4}-2)}x}\right)} & \small \color{#3D99F6} \text{A 0/0 case, L'Hôpital's rule applies.} \\ & = \frac 1{\sin \left({\color{#3D99F6}\lim_{x \to 0} \frac {\frac \pi{2\sqrt{x+4}}}1}\right)} & \small \color{#3D99F6} \text{Differentiate up and down w.r.t. }x \\ & = \frac 1{\sin \frac \pi 4} \\ & = \sqrt 2 \end{aligned}

Therefore, A + B + A + B = e + 2 + e + 2 = 2 + 1 + 4 = 7 \lfloor A \rfloor + \lfloor B \rfloor + \lfloor A+B \rfloor = \lfloor e \rfloor + \lfloor \sqrt 2 \rfloor + \lfloor e + \sqrt 2 \rfloor = 2+1+4 = \boxed{7} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...