( lo g 5 x ) 2 + lo g 5 x ( x 5 ) = 1
Find the sum of all integral roots to the equation above.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Thank You for the solution. Upvoted(+1).
How was your JEE Mains, how much are you expecting?
T h e e q u a t i o n i s c o n v e r t e d t o b a s e 5 , a n d w e g e t ( l o g 5 x ) 2 + l o g 5 5 + l o g 5 x l o g 5 5 − l o g 5 x − 1 = 0 . ⟹ ( l o g 5 x ) 2 = 1 + l o g 5 x 2 l o g 5 x . ∴ l o g 5 x = 0 , ⟹ x = 1 . O R ( l o g 5 x ) 2 ∗ ( 1 + l o g 5 x ) = 2 l o g 5 x , i f l o g 5 x = 0 , ⟹ ( l o g 5 x ) ( 1 + l o g 5 x ) = 2 . S o l v i n g q u a d r a t i c ( l o g 5 x ) 2 + ( l o g 5 x ) − 2 = 0 , l o g 5 x = 2 − 1 ± 1 + 8 . ∴ l o g 5 x = 1 o r l o g 5 x = − 2 . ⟹ r o o t s , x = 5 , o r x = 5 − 2 . S u m o f r o o t s = 1 + 5 + 1 / 2 5 = 6 . 0 4
O R
T h e e q u a t i o n i s c o n v e r t e d t o b a s e x , a n d l e t p = l o g x 5 . C o n d i t i o n f o r c o n v e r t i n g t h e b a s e i s , n e w b a s e = 1 . O n c h e c k i n g x = 1 i s a s o l u t i o n . W h e n x = 1 : − l o g 5 x = l o g x 5 l o g x x i f l o g x 5 = 0 . a n d t h e e q u a t i o n i s p 2 1 + p + 1 p − 1 − 1 = 0 . ⟹ p 2 1 = p + 1 2 . ∴ q u a d r a t i c 2 p 2 − p − 1 = 0 . ⟹ p = 1 , − 2 1 . G i v e s x = 5 , x = 2 5 1 . O n c h e c k i n g x = 2 5 1 , 1 , 5 a r e s o l u t i o n s . ∴ 2 5 1 + 1 + 5 = 6 . 0 4 .
Problem Loading...
Note Loading...
Set Loading...
( lo g 5 x ) 2 + lo g 5 x ( x 5 ) = 1 ( l n 5 l n x ) 2 + ( l n 5 + l n x l n 5 − l n x ) = 1 Substitute ln x = t ( l n 5 t ) 2 + ( l n 5 + t l n 5 − t ) = 1 Taking LCM and cross multiplying, t ( t 2 + t ln 5 − 2 ( ln 5 ) 2 = 0 t ( t + 2 ln 5 ) ( t − ln 5 ) = 0 t = 0 , ln 5 , − 2 ln 5 ∴ x ∈ ( 1 , 5 , 2 5 1 )