Playing with Logarithms

Algebra Level 3

( log 5 x ) 2 + log 5 x ( 5 x ) = 1 \large (\log_5 x)^2 + \log_{5x} \left( \frac{5}{x}\right) = 1

Find the sum of all integral roots to the equation above.


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Akhil Bansal
Apr 4, 2016

( log 5 x ) 2 + log 5 x ( 5 x ) = 1 \large (\log_5 x)^2 + \log_{5x} \left( \frac{5}{x}\right) = 1 ( l n x l n 5 ) 2 + ( l n 5 l n x l n 5 + l n x ) = 1 \large \left(\dfrac{ln x }{ln 5}\right)^2 + \left( \dfrac{ln 5 - ln x }{ln 5 + ln x} \right) = 1 Substitute ln x = t \ln x = t ( t l n 5 ) 2 + ( l n 5 t l n 5 + t ) = 1 \large \left(\dfrac{t }{ln 5}\right)^2 + \left( \dfrac{ln 5 - t }{ln 5 + t} \right) = 1 Taking LCM and cross multiplying, t ( t 2 + t ln 5 2 ( ln 5 ) 2 = 0 \large t(t^2 + t\ln 5 - 2(\ln 5)^2 = 0 t ( t + 2 ln 5 ) ( t ln 5 ) = 0 \large t(t+2\ln 5)(t - \ln 5) = 0 t = 0 , ln 5 , 2 ln 5 t = 0 , \ln 5 , -2 \ln 5 x ( 1 , 5 , 1 25 ) \therefore x \in ( 1 , 5 , \frac{1}{25} )

Thank You for the solution. Upvoted(+1).

Shanthanu Rai - 5 years, 2 months ago

How was your JEE Mains, how much are you expecting?

Kushagra Sahni - 5 years, 2 months ago

T h e e q u a t i o n i s c o n v e r t e d t o b a s e 5 , a n d w e g e t ( l o g 5 x ) 2 + l o g 5 5 l o g 5 x l o g 5 5 + l o g 5 x 1 = 0. ( l o g 5 x ) 2 = 2 l o g 5 x 1 + l o g 5 x . l o g 5 x = 0 , x = 1. O R ( l o g 5 x ) 2 ( 1 + l o g 5 x ) = 2 l o g 5 x , i f l o g 5 x 0 , ( l o g 5 x ) ( 1 + l o g 5 x ) = 2. S o l v i n g q u a d r a t i c ( l o g 5 x ) 2 + ( l o g 5 x ) 2 = 0 , l o g 5 x = 1 ± 1 + 8 2 . l o g 5 x = 1 o r l o g 5 x = 2. r o o t s , x = 5 , o r x = 5 2 . S u m o f r o o t s = 1 + 5 + 1 / 25 = 6.04 The~equation~ is~ converted ~to~base ~5,\\ ~~~~\\ and ~we~get~(log_5 x)^2+ \dfrac{log_5 5-log_5 x}{ log_5 5+log_5 x} -1=0.\\ ~~~~\\ \implies~~( log_5 x)^2=\dfrac{2log_5 x}{1+ log_5 x}.\\ ~~~~\\ \therefore~~ log_5 x=0,~~\implies~x=1. \\ ~~~~\\ OR~~(log_5 x)^2*(1+log_5 x)=2log_5 x,~~~if~log_5 x \neq~0,\\ ~~~~\\ \implies~(log_5 x)(1+log_5 x)=2.\\ ~~~~\\ Solving~quadratic~~(log_5 x)^2+(log_5 x)-2=0,\\ ~~~~\\ log_5 x=\dfrac{-1\pm~\sqrt{1+8}}2. \\ ~~~~\\ \therefore~~log_5 x=1~~or~~log_5 x=-2.\\ ~~~~\\ \implies~roots,~~x=5,~~or~~x=5^{-2}.\\ ~~~~\\ Sum~of~roots~~=1+5+1/25=6.04

O R OR

T h e e q u a t i o n i s c o n v e r t e d t o b a s e x , a n d l e t p = l o g x 5. C o n d i t i o n f o r c o n v e r t i n g t h e b a s e i s , n e w b a s e 1. O n c h e c k i n g x = 1 i s a s o l u t i o n . W h e n x 1 : l o g 5 x = l o g x x l o g x 5 i f l o g x 5 0. a n d t h e e q u a t i o n i s 1 p 2 + p 1 p + 1 1 = 0. 1 p 2 = 2 p + 1 . q u a d r a t i c 2 p 2 p 1 = 0. p = 1 , 1 2 . G i v e s x = 5 , x = 1 25 . O n c h e c k i n g x = 1 25 , 1 , 5 a r e s o l u t i o n s . 1 25 + 1 + 5 = 6.04. The~equation~ is~ converted ~to~base ~x,~~and ~let~p=log_x 5.\\ ~~~~\\ Condition~for~converting~the~ base~is,~new~base~\neq~1.\\ ~~~~\\ On~checking~x=1~is~a~solution. \\ ~~~~\\ When~x\neq~1:-\\ ~~~~\\ log_5 x=\dfrac {log_x x}{log_x 5}~~if~~ log_x 5~\neq~0.\\ ~~~~\\ and ~the~equation~is~\dfrac 1 {p^2}+ \dfrac{p-1}{p+1} -1=0.\\ ~~~~\\ \implies~~\dfrac 1 {p^2}=\dfrac 2 {p+1}.\\ ~~~~\\ \therefore~quadratic~~2p^2 - p - 1=0.\\ ~~~~\\ \implies~p=1,~~ - \frac 1 2.\\ ~~~~\\ Gives~x=5,~~x=\frac 1 {25}. \\ ~~~~\\ On~checking~{\Large~~\color{#D61F06}{x=\frac 1 {25}, ~1,~5}}~~are~ solutions. \\ ~~~~\\ \therefore~\frac 1 {25}+1+5=6.04.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...