Playing with Triangles!

Geometry Level 5

In a Δ A B C \Delta ABC , let A B = A C = 5 , B C = 6 AB = AC = 5, \ BC = 6 . Let E E be a point on A C AC and F F be a point on A B AB such that B E = C F , E B C F C B BE=CF, \ \angle EBC \neq \angle FCB and sin ( θ ) = 5 13 \sin(\theta) = \frac{5}{13} , where θ = E B C \theta = \angle EBC . Let H H be the point of intersection of B E BE and C F CF , and let K K be a point on B C BC such that H K HK is perpendicular to B C BC .

If the length of H K HK can be represented as α β \dfrac{\alpha}{\beta} where α , β Z + , gcd ( α , β ) = 1 \alpha,\beta \in \mathbb Z^+, \ \ \gcd(\alpha,\beta) = 1 , submit the value of α + β \alpha + \beta as your answer.


The answer is 1941.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Notice that B = C \angle B=\angle C , so let B = C = β \angle B=\angle C=\beta .

First we find sin β \sin \beta and cos β \cos \beta , this is easy since this is an isosceles triangle:

sin β = 4 5 \sin \beta=\dfrac{4}{5} and cos β = 3 5 \cos \beta=\dfrac{3}{5} .

Also, we find that cos θ = 12 13 \cos \theta=\dfrac{12}{13} , sin ( 2 β ) = 24 25 \sin(2\beta)=\dfrac{24}{25} and cos ( 2 β ) = 7 25 \cos(2\beta)=-\dfrac{7}{25} . We are going to use these values later.

Then let B C F = α \angle BCF=\alpha , so B F C = 18 0 α β \angle BFC=180^\circ-\alpha-\beta and B E C = 180 β θ \angle BEC=180-\beta-\theta . Now apply sine rule on B F C \triangle BFC :

6 sin ( 18 0 α β ) = C F sin β \dfrac{6}{\sin(180^\circ-\alpha-\beta)}=\dfrac{CF}{\sin \beta}

And in B E C \triangle BEC :

6 sin ( 18 0 θ β ) = B E sin β \dfrac{6}{\sin(180^\circ-\theta-\beta)}=\dfrac{BE}{\sin \beta}

Since B E = C F BE=CF :

6 sin ( 18 0 α β ) = 6 sin ( 18 0 θ β ) sin ( 18 0 ( α + β ) ) = sin ( 18 0 ( θ + β ) ) sin ( α + β ) = sin ( θ + β ) \dfrac{6}{\sin(180^\circ-\alpha-\beta)}=\dfrac{6}{\sin(180^\circ-\theta-\beta)} \\ \sin(180^\circ-(\alpha+\beta))=\sin(180^\circ-(\theta+\beta))\\ \sin(\alpha+\beta)=\sin(\theta+\beta)

But since α θ \alpha \neq \theta , then α = 18 0 ( θ + 2 β ) \alpha=180^\circ-(\theta+2\beta) .

Now, B H C = 18 0 θ α = 2 β \angle BHC=180^\circ-\theta-\alpha=2\beta .

Then, calculate B H BH using sine rule again:

B H sin α = 6 sin B H C B H = 6 sin ( 18 0 ( θ + 2 β ) ) sin ( 2 β ) = 6 sin ( θ + 2 β ) sin ( 2 β ) \dfrac{BH}{\sin \alpha}=\dfrac{6}{\sin \angle BHC} \\ BH=\dfrac{6\sin(180^\circ-(\theta+2\beta))}{\sin(2\beta)}=\dfrac{6\sin(\theta+2\beta)}{\sin(2\beta)}

Finally,

sin θ = H K B H H K = B H sin θ H K = 6 sin ( θ + 2 β ) sin θ sin ( 2 β ) H K = 6 ( sin θ cos ( 2 β ) + cos θ sin ( 2 β ) ) sin θ sin ( 2 β ) H K = 6 ( 5 13 7 25 + 12 13 24 25 ) ( 5 13 ) 24 25 H K = 1265 676 \sin \theta=\dfrac{HK}{BH} \implies HK=BH \sin \theta \\ HK=\dfrac{6\sin(\theta+2\beta) \sin \theta}{\sin(2\beta)} \\ HK=\dfrac{6(\sin \theta \cos(2\beta)+\cos \theta \sin(2\beta))\sin \theta}{\sin(2\beta)} \\ HK=\dfrac{6(\frac{5}{13}\cdot \frac{-7}{25}+\frac{12}{13}\cdot\frac{24}{25})(\frac{5}{13})}{\frac{24}{25}} \\ HK=\dfrac{1265}{676} .

Thus, the final answer is 1265 + 676 = 1941 1265+676=\boxed{1941} .

Chew-Seong Cheong
Aug 19, 2015

Let B E = C F = a BE=CF=a and A B C = A C B = ϕ = sin 1 ( 4 5 ) \angle ABC = \angle ACB = \phi = \sin^{-1} \left( \frac{4}{5} \right) . Using Sine Rule in E B C \triangle EBC , we have:

a sin ϕ = 6 sin ( 18 0 θ ϕ ) = 6 sin ( θ + ϕ ) a = 6 sin ϕ sin ( θ + ϕ ) = 6 sin ϕ sin θ cos ϕ + sin ϕ cos θ = 6 × 4 5 5 13 × 3 5 + 4 5 × 12 13 = 104 21 \begin{aligned} \frac{a}{\sin{\phi}} & = \frac{6}{\sin{(180^\circ - \theta - \phi)}} = \frac{6}{\sin{(\theta + \phi)}} \\ \Rightarrow a & = \frac{6\sin{\phi}} {\sin{(\theta + \phi)}} = \frac{6\sin{\phi}} {\sin{\theta} \cos{\phi} + \sin{\phi} \cos{\theta}} \\ & = \frac{6\times \frac{4}{5}} {\frac{5}{13} \times \frac{3}{5} + \frac{4}{5} \times \frac{12}{13}} = \frac{104}{21} \end{aligned}

Let B F C = γ \angle BFC = \gamma . Using Sine Rule in F B C \triangle FBC , we have:

sin γ 6 = sin ϕ a sin γ = 6 × 4 5 × 21 104 = 63 65 cos γ = 16 65 \begin{aligned} \frac{\sin{\gamma}}{6} & = \frac{\sin{\phi}}{a} \\ \Rightarrow \sin{\gamma} & = 6 \times \frac{4}{5} \times \frac{21}{104} = \frac{63} {65} \quad \Rightarrow \cos{\gamma} = \frac{16}{65} \end{aligned}

Then F C B = δ = 18 0 ϕ γ \angle FCB = \delta = 180^\circ - \phi - \gamma .

sin δ = sin ( 18 0 ϕ γ ) = sin ( ϕ + γ ) = 4 5 × 16 65 + 63 65 × 3 5 = 253 325 tan δ = 253 204 \begin{aligned} \Rightarrow \sin{\delta} & = \sin{(180^\circ - \phi - \gamma)} = \sin{(\phi + \gamma)} \\ & = \frac{4}{5}\times \frac{16}{65} + \frac{63}{65} \times \frac{3}{5} = \frac{253}{325} \\ \Rightarrow \tan{\delta} & = \frac{253}{204} \end{aligned}

Now, let B K = x BK = x . therefore, K C = 6 x KC = 6-x and H K = y HK = y . Then, we have:

y = x tan θ = ( 6 x ) tan δ 5 x 12 = 253 ( 6 x ) 204 x = 759 169 y = x tan θ = 759 169 × 5 12 = 1265 676 α + β = 1265 + 676 = 1941 \begin{aligned} y & = x \tan{\theta} = (6-x) \tan{\delta} \\ \Rightarrow \frac{5x}{12} & = \frac{253(6-x)}{204} \\ x & = \frac{759}{169} \\ \Rightarrow y & = x \tan{\theta} = \frac{759}{169} \times \frac{5}{12} = \frac{1265}{676} \\ \alpha + \beta & = 1265 + 676 = \boxed{1941} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...