Play with functions 4

Calculus Level 4

Let f ( b ) = 0 π x b 2 cos 2 x d x f(b) =\displaystyle\int _{ 0 }^{ \pi }{ \frac x{ { b }^{ 2 }-{\cos }^{ 2 }x } dx } for b > 1 b>1 , then what is 15 π 2 f ( 5 4 ) \dfrac { 15 }{ { \pi }^{ 2 } } f\left( \dfrac { 5 }{ 4 } \right) ?

Also try Play with functions 5


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
May 30, 2018

Relevant wiki: Integration Tricks

Similar solution with @abdulmuttalib lokhandwala's.

f ( b ) = 0 π x b 2 cos 2 x d x Using a b f ( x ) d x = a b f ( a + b x ) d x = 1 2 0 π ( x b 2 cos 2 x + π x b 2 cos 2 x ) d x = 1 2 0 π π b 2 cos 2 x d x Integral is symmetrical about π 2 . = 0 π 2 π b 2 cos 2 x d x Multiply up and down by sec 2 x = 0 π 2 π sec 2 x b 2 sec 2 x 1 d x Let t = tan x d t = sec 2 x d x = 0 π b 2 t 2 + b 2 1 d t = π b 2 1 0 1 b 2 b 2 1 t 2 + 1 d t = π b b 2 1 tan 1 ( b t b 2 1 ) 0 = π 2 2 b b 2 1 \begin{aligned} f(b) & = \int_0^\pi \frac x{b^2-\cos^2 x}dx & \small \color{#3D99F6} \text{Using }\int_a^b f(x) \ dx = \int_a^b f(a+b-x) \ dx \\ & = \frac 12 \int_0^\pi \left(\frac x{b^2-\cos^2 x} + \frac {\pi-x}{b^2-\cos^2 x} \right) dx \\ & = \frac 12 \int_0^\pi \frac \pi{b^2-\cos^2 x} dx & \small \color{#3D99F6} \text{Integral is symmetrical about }\frac \pi 2. \\ & = \int_0^\frac \pi 2 \frac \pi{b^2-\cos^2 x} dx & \small \color{#3D99F6} \text{Multiply up and down by } \sec^2 x \\ & = \int_0^\frac \pi 2 \frac {\pi \sec^2 x}{b^2\sec^2 x-1} dx & \small \color{#3D99F6} \text{Let }t = \tan x \implies dt = \sec^2 x\ dx \\ & = \int_0^\infty \frac \pi{b^2t^2+b^2-1} dt \\ & = \frac \pi{b^2-1}\int_0^\infty \frac 1{\frac {b^2}{b^2-1}t^2 + 1}dt \\ & = \frac \pi{b\sqrt{b^2-1}} \tan^{-1} \left(\frac {bt}{\sqrt{b^2-1}}\right) \Bigg|_0^\infty \\ & = \frac {\pi^2}{2b\sqrt{b^2-1}} \end{aligned}

Therefore, 15 π 2 f ( 5 4 ) = 15 π 2 π 2 2 5 4 ( 5 4 ) 2 1 = 8 \dfrac {15}{\pi^2} f\left(\dfrac 54\right) = \dfrac {15}{\pi^2} \cdot \dfrac {\pi^2}{2\cdot \frac 54 \sqrt{\left(\frac 54\right)^2-1}} = \boxed{8} .

f ( b ) = 0 π x b 2 ( cos x ) 2 f ( b ) = 0 π π x b 2 ( cos x ) 2 A d d i n g b o t h w e g e t f ( b ) = π 2 0 π 1 b 2 ( cos x ) 2 f ( b ) = 0 π ( sec x ) 2 b 2 ( sec x ) 2 1 T a k i n g t a n x = t a n d s o l v i n g w e g e t f ( b ) = π 2 2 b 1 b 2 1 f\left( b \right) =\int _{ 0 }^{ \pi }{ \frac { x }{ { b }^{ 2 }-{ (\cos { x) } }^{ 2 } } } \\ f\left( b \right) =\int _{ 0 }^{ \pi }{ \frac { \pi -x }{ { b }^{ 2 }-({ \cos { x) } }^{ 2 } } } \\ \\ Adding\quad both\quad we\quad get\\ \\ f\left( b \right) =\frac { \pi }{ 2 } \int _{ 0 }^{ \pi }{ \frac { 1 }{ { b }^{ 2 }-{ (\cos { x) } }^{ 2 } } } \\ f\left( b \right) =\int _{ 0 }^{ \pi }{ \frac { { (\sec { x) } }^{ 2 } }{ { b }^{ 2 }{ (\sec { x) } }^{ 2 }-1 } } \\ \\ Taking\quad tanx=t\quad and\quad solving\quad we\quad get\quad \\ \\ f\left( b \right) =\frac { { \pi }^{ 2 } }{ 2b } \frac { 1 }{ \sqrt { { b }^{ 2 }-1 } }

Substituiting tan x at that step would not work as tanx is discontinuous at π 2 \frac{\pi}{2} . First you have to consider the symmetry and make the integral from 0 to π 2 \frac{\pi}{2} . And then apply substitution.

Arghyadeep Chatterjee - 1 year, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...