Please note: Harsh is not harsh

Calculus Level 4

1 ln 3 ( x ) x 2 x d x \large\int_{1}^{\infty} \dfrac{\ln^3(x)}{x^2-x} \, dx

If the above integral can be expressed as A π B C \dfrac{A\pi^{B}}{C} for some coprime integers A , B , C A,B,C , compute A + B + C A+B+C .


This problem is original and is dedicated to Harsh S


The answer is 20.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Nihar Mahajan
Feb 23, 2016

We substitute x = e y x=e^y , then d x = e y d y dx=e^y \ dy and ln ( x ) = y \ln(x)=y . As x = 1 , y = 0 x=1 \ , \ y=0 and as x , y x\rightarrow \infty \ , \ y\rightarrow \infty as well and the integral converts into:

1 ln 3 ( x ) x ( x 1 ) d x = 0 y 3 e y ( e y 1 ) × e y d y = 0 y 3 ( e y 1 ) d y \int_{1}^{\infty} \dfrac{\ln^3(x)}{x(x-1)} \, dx =\int_{0}^{\infty} \dfrac{y^3}{e^y(e^y-1)} \times e^y \, dy =\int_{0}^{\infty} \dfrac{y^3}{(e^y-1)} \, dy

Now recall that ζ ( s ) Γ ( s ) = 0 y s 1 e y 1 d y \displaystyle\zeta(s)\Gamma(s)=\int_{0}^{\infty} \dfrac{y^{s-1}}{e^y-1} \, dy and compare it with above and we get that s 1 = 3 s = 4 s-1=3\Rightarrow s=4 . Hence we have:

0 y 3 ( e y 1 ) d y = ζ ( 4 ) Γ ( 4 ) = π 4 90 × 6 = π 4 15 \int_{0}^{\infty} \dfrac{y^3}{(e^y-1)} \, dy = \zeta(4)\Gamma(4)=\dfrac{\pi^4}{90} \times 6 = \boxed{\dfrac{\pi^4}{15}}

Hence , A = 1 , B = 4 , C = 15 A + B + C = 1 + 4 + 15 = 20 A=1 \ , \ B=4 \ , \ C=15 \Rightarrow A+B+C=1+4+15=\boxed{20} .

Moderator note:

That's a nice approach. Sometimes if x x is the denominator, we can use the substitution x = e y x = e^y to hopefully simplify the integration further.

Proof that ζ ( s ) Γ ( s ) = 0 y s 1 e y 1 d y \displaystyle\zeta(s)\Gamma(s)=\int_{0}^{\infty} \dfrac{y^{s-1}}{e^y-1} \, dy

Using maclaurin series expansion of e y 1 = i = 0 e i y \displaystyle e^y-1 = -\sum_{i=0}^{\infty} e^{iy}

Thus we get i = 0 0 y s 1 e i y d y \displaystyle\sum_{i=0}^{\infty} \int_{0}^{\infty} y^{s-1} e^{iy}\, dy

Which is equal to i = 0 Γ ( s ) i s \displaystyle\sum_{i=0}^{\infty} \dfrac{\Gamma(s)}{i^{s}}

Which is again equal to ζ ( s ) Γ ( s ) \zeta (s) \Gamma (s)

Hence proved.

Thanks @Nihar Mahajan for dedicating a prob to me!

Harsh Shrivastava - 5 years, 3 months ago

Log in to reply

Welcome , and thanks for the proof :)

Nihar Mahajan - 5 years, 3 months ago

See my proof in the wiki on Riemann zeta function. I've proved it using RMT. Talking about this problem you could approach it through the relation of polygamma function with Hurwitz zeta function. That'll shorten the problem for just 2 steps.

Aditya Kumar - 5 years, 3 months ago

@Nihar Mahajan Same way!!!

Aaghaz Mahajan - 3 years, 1 month ago

I = 1 ln 3 ( x ) x 2 x d x I =\displaystyle \int_{1}^{\infty} \dfrac{\ln^{3}(x)}{x^{2}-x}dx
Put x = 1 t x = \dfrac{1}{t} the integral transforms into,
I = 0 1 ln 3 ( t ) 1 t d t I = \displaystyle -\int_{0}^{1}\dfrac{\ln^{3}(t)}{1-t}dt
Using the McLaurin series for 1 1 t = k = 0 t k \dfrac{1}{1-t} = \displaystyle \sum_{k=0}^{\infty}t^{k}
I = k = 0 0 1 ln 3 ( x ) t k d t I = -\displaystyle \sum_{k=0}^{\infty} \int_{0}^{1} \ln^{3}(x)t^{k}dt



Excercise to the reader :
Prove :
0 1 x m ln n ( x ) d x = ( 1 ) n n ! ( m + 1 ) n + 1 \displaystyle \int_{0}^{1} x^{m}\ln^{n}(x)dx = \dfrac{(-1)^n n!}{(m+1)^{n+1}}
I = k = 0 ( 1 ) 3 3 ! ( k + 1 ) 4 = 6 ζ ( 4 ) \therefore I = - \displaystyle \sum_{k=0}^{\infty} \dfrac{(-1)^{3} 3!}{(k+1)^{4}} = 6 \cdot \zeta(4)

I = 6 π 4 90 = π 4 15 I = 6 \cdot \dfrac{\pi^{4}}{90} = \dfrac{\pi^{4}}{15}
A + B + C = 1 + 4 + 15 = 20 A+B+C = 1 + 4 + 15 = 20

I ( m , n ) = 0 1 x m ln n ( x ) d x \large \mathfrak{I}(m,n)=\displaystyle \int_{0}^{1} x^{m}\ln^{n}(x)dx Using Integration by parts : I ( m , n ) = x m + 1 ( ln n x ) m + 1 0 1 n m + 1 0 1 x m ln n 1 x d x \mathfrak{I}(m,n)=\dfrac{x^{m+1}(\ln^n x)}{m+1}|_0^1-\dfrac{n}{m+1}\int_0^1 x^m \ln^{n-1}x dx = n m + 1 I ( m , n 1 ) \large =-\dfrac{n}{m+1}\mathfrak{I}(m,n-1) = n ( n 1 ) ( m + 1 ) 2 I ( m , n 2 ) \large =\dfrac{n(n-1)}{(m+1)^2}\mathfrak{I}(m,n-2) \cdots\cdots = ( 1 ) n n ! ( m + 1 ) n I ( m , 0 ) \large =(-1)^n\dfrac{n!}{(m+1)^n}\mathfrak{I}(m,0) = ( 1 ) n n ! ( m + 1 ) n + 1 \Large = \dfrac{(-1)^n n!}{(m+1)^{n+1}} ( S i n c e I ( m , 0 ) = 0 1 x m d x = 1 m + 1 ) \small{(Since~~ \mathfrak{I}(m,0)=\int_0^1x^mdx=\dfrac{1}{m+1})}

Rishabh Jain - 5 years, 3 months ago

Log in to reply

Nicely done.

A Former Brilliant Member - 5 years, 3 months ago

Log in to reply

Thanks!! :-}

Rishabh Jain - 5 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...