Plus minus plus minus plus minus

Calculus Level 2

1 , 1 2 2 , 1 3 2 , 1 4 2 , 1, \frac1{2^2}, \frac1{3^2} , \frac1{4^2} , \ldots

The sum of all the numbers above gives a value of A A .
Whereas the alternating sum of the numbers above gives a value of B B .

What is the ratio between A ÷ B A \div B ?


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

We have that the alternating sum B = 1 1 2 2 + 1 3 2 1 4 2 + 1 5 2 1 6 2 + . . . . . . = B = 1 - \dfrac{1}{2^{2}} + \dfrac{1}{3^{2}} - \dfrac{1}{4^{2}} + \dfrac{1}{5^{2}} - \dfrac{1}{6^{2}} + ...... =

A 2 ( 1 2 2 + 1 4 2 + 1 6 2 + . . . . . ) = A 2 ( 1 2 2 + 1 ( 2 2 ) 2 + 1 ( 2 3 ) 2 + . . . . . ) = A - 2\left(\dfrac{1}{2^{2}} + \dfrac{1}{4^{2}} + \dfrac{1}{6^{2}} + ..... \right) = A - 2\left(\dfrac{1}{2^{2}} + \dfrac{1}{(2*2)^{2}} + \dfrac{1}{(2*3)^{2}} + ..... \right) =

A 2 2 2 ( 1 + 1 2 2 + 1 3 2 + . . . . ) = A 1 2 A = 1 2 A A - \dfrac{2}{2^{2}}\left(1 + \dfrac{1}{2^{2}} + \dfrac{1}{3^{2}} + .... \right) = A - \dfrac{1}{2}A = \dfrac{1}{2}A , and so A ÷ B = A ÷ ( A / 2 ) = 2 A \div B = A \div (A/2) = \boxed{2} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...