± \pm Careful

Geometry Level 2

t a n ( c o s 1 x ) = s i n ( t a n 1 2 ) \large tan\left(cos^{-1}x\right)=sin\left(tan^{-1}2\right)

Find the value of x x

5 3 \frac{5}{3} ± 5 3 \pm\frac{\sqrt5}{3} 5 3 \frac{\sqrt5}{3} 2 5 3 -\frac{\sqrt5}{3} Can't be determined

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Munem Shahriar
Nov 12, 2017

tan ( cos 1 x ) = sin ( tan 1 2 ) \tan(\cos^{-1}x )=\sin(\tan^{-1}2)

1 x 2 x = sin ( arctan ( 2 ) ) \Rightarrow \dfrac{\sqrt{1-x^2}}{x} = \sin(\arctan(2))

1 x 2 = 2 5 5 x \Rightarrow \sqrt{1-x^2} = \dfrac{2\sqrt5}{5}x

( 1 x 2 ) 2 = ( 2 5 5 x ) 2 \Rightarrow \left(\sqrt{1 - x^2}\right)^2 = \left(\dfrac{2\sqrt5}{5}x\right)^2 ~~~~~~ [ square on both sides ] [ \text{square on both sides}]

1 x 2 = 2 2 × 5 5 2 x 2 \Rightarrow 1 - x^2 = \dfrac{2^2 \times 5}{5^2} x^2

1 x 2 = 4 5 x 2 \Rightarrow 1 - x^2 = \dfrac45 x^2

After solving it, we get,

x = 5 3 , x = 5 3 x = \dfrac{\sqrt{5}}{3}, x = -\dfrac{\sqrt{5}}{3}

Verifying solutions:

Substituting x = 5 3 x = \dfrac{\sqrt{5}}{3} in 1 x 2 x \dfrac{\sqrt{1-x^2}}{x}

1 ( 5 3 ) 2 5 3 = 2 5 5 \dfrac{\sqrt{1- \left(\frac{\sqrt 5}{3}\right)^2}}{\frac{\sqrt 5}{3}} = \dfrac{2\sqrt5}{5}

Substituting x = 5 3 x = -\dfrac{\sqrt{5}}{3} in 1 x 2 x \dfrac{\sqrt{1-x^2}}{x}

1 ( 5 3 ) 2 5 3 2 5 5 \dfrac{\sqrt{1- \left(-\frac{\sqrt 5}{3}\right)^2}}{-\frac{\sqrt 5}{3}} \ne \dfrac{2\sqrt5}{5}

Hence the final solution is x = 5 3 x = \boxed{\dfrac{\sqrt{5}}{3}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...