Pocket Change

Algebra Level 3

How many different possible ways can you make one U.S. dollar with only nickels, dimes, and quarters?


The answer is 29.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tom Engelsman
Apr 24, 2021

If x , y , z N 0 x, y, z \in \mathbb{N_{0}} respectively represent the number of nickels, dimes, & quarters, then we have 0.05 x + 0.10 y + 0.25 z = 1 x + 2 y + 5 z = 20 0.05x + 0.10y + 0.25z = 1 \Rightarrow x + 2y + 5z = 20 . If z = 0 , 1 , 2 , 3 , 4 z = 0, 1, 2, 3, 4 , then the corresponding ordered-pairs ( x , y ) (x,y) compute to:

z = 0 x + 2 y = 20 , ( x , y ) = ( 0 , 10 ) ; ( 2 , 9 ) ; ( 4 , 8 ) ; ( 6 , 7 ) ; ( 8 , 6 ) ; ( 10 , 5 ) ; ( 12 , 4 ) ; ( 14 , 3 ) ; ( 16 , 2 ) ; ( 18 , 1 ) ; ( 20 , 0 ) z = 0 \Rightarrow x + 2y = 20, (x,y) = (0,10); (2,9); (4,8); (6,7); (8,6); (10,5); (12,4); (14,3); (16,2); (18,1); (20,0) (11 ways),

z = 1 x + 2 y = 15 , ( x , y ) = ( 1 , 7 ) ; ( 3 , 6 ) ; ( 5 , 5 ) ; ( 7 , 4 ) ; ( 9 , 3 ) ; ( 11 , 2 ) ; ( 13 , 1 ) ; ( 15 , 0 ) z=1 \Rightarrow x+2y = 15, (x,y) = (1,7); (3,6); (5,5); (7,4); (9,3); (11,2); (13,1); (15,0) (8 ways),

z = 2 x + 2 y = 10 , ( x , y ) = ( 0 , 5 ) ; ( 2 , 4 ) ; ( 4 , 3 ) ; ( 6 , 2 ) ; ( 8 , 1 ) ; ( 10 , 0 ) z=2 \Rightarrow x+2y = 10, (x,y) = (0,5); (2,4); (4,3); (6,2); (8,1); (10,0) (6 ways),

z = 3 x + 2 y = 5 , ( x , y ) = ( 1 , 2 ) ; ( 3 , 1 ) ; ( 5 , 0 ) z=3 \Rightarrow x+2y = 5, (x,y) = (1,2); (3,1); (5,0) (3 ways),

z = 4 x + 2 y = 0 , ( x , y ) = ( 0 , 0 ) z=4 \Rightarrow x+2y = 0, (x,y) = (0,0) (1 way).

Hence, there are 11 + 8 + 6 + 3 + 1 = 29 11+8+6+3+1 = \boxed{29} total combinations to make $ 1 \$1 out of just nickels, dimes, and quarters.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...