How many different possible ways can you make one U.S. dollar with only nickels, dimes, and quarters?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
If x , y , z ∈ N 0 respectively represent the number of nickels, dimes, & quarters, then we have 0 . 0 5 x + 0 . 1 0 y + 0 . 2 5 z = 1 ⇒ x + 2 y + 5 z = 2 0 . If z = 0 , 1 , 2 , 3 , 4 , then the corresponding ordered-pairs ( x , y ) compute to:
z = 0 ⇒ x + 2 y = 2 0 , ( x , y ) = ( 0 , 1 0 ) ; ( 2 , 9 ) ; ( 4 , 8 ) ; ( 6 , 7 ) ; ( 8 , 6 ) ; ( 1 0 , 5 ) ; ( 1 2 , 4 ) ; ( 1 4 , 3 ) ; ( 1 6 , 2 ) ; ( 1 8 , 1 ) ; ( 2 0 , 0 ) (11 ways),
z = 1 ⇒ x + 2 y = 1 5 , ( x , y ) = ( 1 , 7 ) ; ( 3 , 6 ) ; ( 5 , 5 ) ; ( 7 , 4 ) ; ( 9 , 3 ) ; ( 1 1 , 2 ) ; ( 1 3 , 1 ) ; ( 1 5 , 0 ) (8 ways),
z = 2 ⇒ x + 2 y = 1 0 , ( x , y ) = ( 0 , 5 ) ; ( 2 , 4 ) ; ( 4 , 3 ) ; ( 6 , 2 ) ; ( 8 , 1 ) ; ( 1 0 , 0 ) (6 ways),
z = 3 ⇒ x + 2 y = 5 , ( x , y ) = ( 1 , 2 ) ; ( 3 , 1 ) ; ( 5 , 0 ) (3 ways),
z = 4 ⇒ x + 2 y = 0 , ( x , y ) = ( 0 , 0 ) (1 way).
Hence, there are 1 1 + 8 + 6 + 3 + 1 = 2 9 total combinations to make $ 1 out of just nickels, dimes, and quarters.