Point in an equilateral \triangle

Geometry Level 4

A B C \triangle ABC is an equilateral triangle with a point P P in its interior. If A P 2 = B P 2 + C P 2 AP^2 = BP^2 + CP^2 , find the measure of B P C \angle BPC in degrees.


The answer is 150.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ahmad Saad
Jul 25, 2017

Very nice and elegant! +1

Ariel Gershon - 3 years, 10 months ago

that's how i did it too

Relue Tamref - 3 years, 10 months ago
Chew-Seong Cheong
Jul 25, 2017

Let the coordinates of A ( 0 , 3 ) A (0, \sqrt 3) , B ( 1 , 0 ) B(-1,0) , C ( 0 , 1 ) C(0,1) , and P ( x , y ) P(x,y) . Then

A P 2 = B P 2 + C P 2 ( x 0 ) 2 + ( y 3 ) 2 = ( x + 1 ) 2 + ( y 0 ) 2 + ( x 1 ) 2 + ( y 0 ) 2 x 2 + y 2 2 3 y + 3 = 2 x 2 + 2 + 2 y 2 x 2 + y 2 + 2 3 y = 1 x 2 + y 2 1 = 2 3 y . . . ( ) \begin{aligned} AP^2 & = BP^2+CP^2 \\ (x-0)^2+(y-\sqrt 3)^2 & = (x+1)^2+(y-0)^2+(x-1)^2+(y-0)^2 \\ x^2 + y^2-2\sqrt 3y +3 & = 2x^2 + 2 + 2y^2 \\ x^2 + y^2 + 2\sqrt 3y & = 1 \\ x^2 + y^2 - 1 & = - 2\sqrt 3y \quad \color{#3D99F6}...(*) \end{aligned}

Let the foot of altitude from P P to B C BC be Q Q , then

B P C = B P Q + C P Q tan ( B P C ) = tan ( B P Q + C P Q ) = tan ( B P Q ) + tan ( C P Q ) 1 tan ( B P Q ) tan ( C P Q ) = 1 + x y + 1 x y 1 1 + x y × 1 x y = 2 y x 2 + y 2 1 ( 1 ) : x 2 + y 2 1 = 2 3 y = 2 y 2 3 y = 1 3 B P C = 150 \begin{aligned} \angle BPC & = \angle BPQ + \angle CPQ \\ \tan (\angle BPC) & = \tan (\angle BPQ + \angle CPQ) \\ & = \frac {{\color{#3D99F6}\tan (\angle BPQ)} + \color{#D61F06}\tan(\angle CPQ)}{1 - {\color{#3D99F6}\tan (\angle BPQ)} \color{#D61F06}\tan(\angle CPQ)} \\ & = \frac {{\color{#3D99F6}\frac {1+x}y} + \color{#D61F06}\frac {1-x}y}{1 - {\color{#3D99F6}\frac {1+x}y} \times \color{#D61F06}\frac {1-x}y} \\ & = \frac {2y}{\color{#3D99F6} x^2+y^2-1} & \small \color{#3D99F6} (1): \quad x^2 + y^2 - 1 = - 2\sqrt 3y \\ & = \frac {2y}{\color{#3D99F6} - 2\sqrt 3y} = - \frac 1{\sqrt 3} \\ \implies \angle BPC & = \boxed{150}^\circ \end{aligned}

Great solution <3

Valentin Duringer - 1 year ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...