Points and some more points

Calculus Level 2

lim x 4 2 x 4 x = ? \large \displaystyle \lim_{x\to 4}\dfrac{2-\sqrt{x}}{4-x} =\, ?


The answer is 0.25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Munem Shahriar
Nov 20, 2017

lim x 4 2 x 4 x \lim_{x\to 4}\dfrac{2-\sqrt{x}}{4-x}

= lim x 4 ( 2 x ) ( 2 + x ) ( 4 x ) ( 2 + x ) = \lim_{x\to 4} \dfrac{(2-\sqrt{x})(2+\sqrt{x})}{(4-x) (2+\sqrt{x})} ~ ~~ ~ ~ ~ ~ ~ ~ ; [ Multiply by 2 + x 2 + x ] ; \left[ \text{Multiply by} \dfrac{2+\sqrt x}{2+\sqrt x}\right]

= lim x 4 ( 4 x ) ( 4 x ) ( 2 + x ) = \lim_{x\to 4} \dfrac{(4-x)}{(4-x) (2+\sqrt{x})}

= lim x 4 1 ( 2 + x ) = \lim_{x\to 4} \dfrac{1}{ (2+\sqrt{x})}

= 1 2 + 4 = 1 4 0.25 = \dfrac{1}{2+\sqrt{4}}= \dfrac14 \implies \boxed{0.25}

lim x 4 2 x 4 x lim x 4 2 x ( 2 + x ) ( 2 x ) lim x 4 1 2 + x 1 4 = 0.25 \lim_{x \to 4} \frac{2 - \sqrt{x}}{4 - x} \\ \lim_{x \to 4} \frac{2 - \sqrt{x}}{(2 + \sqrt{x})(2 - \sqrt{x})} \\ \lim_{x \to 4} \frac{1}{2 + \sqrt{x}} \\ \frac{1}{4} = \boxed{0.25}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...