Points in a square puzzle

Geometry Level 3

What is the average distance between two randomly placed points in a square that measures 1 unit by 1 unit?

Give your answer to 3 decimal places.


The answer is 0.521.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tom Engelsman
Sep 2, 2017

I'm going to take a random variable + calculus approach here. Let us define x , y |x|, |y| as the distances between the x & y-coordinates of our two randomly chosen points in ( 0 , 1 ) (0,1) . These random variables then follow a Triangular Distribution (instead of a Uniform Distribution):

x , y f x = 2 ( 1 x ) , f y = 2 ( 1 y ) |x|, |y| \Rightarrow f_{|x|} = 2(1-|x|), f_{|y|} = 2(1-|y|) for x , y ( 0 , 1 ) |x|, |y| \in (0,1)

These translate into the following double integral:

A = 4 0 1 0 1 x 2 + y 2 ( 1 x ) ( 1 y ) d y d x A = 4\displaystyle{\int_{0}^{1} \int_{0}^{1} \sqrt{|x|^2 + |y|^2}(1-|x|)(1-|y|) \mathrm{d}|y| \mathrm{d}|x|}

which can be converted into cylindrical coordinates: x = r c o s θ , y = r s i n θ , d x d y = r d r d θ , r [ 0 , s e c θ ] , θ [ 0 , π 4 ] |x| = r cos\theta, |y| = r sin\theta, d|x|d|y| = rdrd\theta, r \in [0, sec\theta], \theta \in[0,\frac{\pi}{4}] , or simply:

A = 8 0 π 4 0 s e c θ r ( 1 r c o s θ ) ( 1 r s i n θ ) r d r d θ A = 8\displaystyle{\int_{0}^{\frac{\pi}{4}} \int_{0}^{sec\theta} r \cdot (1-r cos\theta)(1-r sin\theta) r \mathrm{d}r \mathrm{d}\theta} ; (NOTE: we need to double our integral to accommodate both halves of our unit square)

or 8 0 π 4 0 s e c θ r 2 ( c o s θ + s i n θ ) r 3 + ( c o s θ s i n θ ) r 4 d r d θ 8\displaystyle{\int_{0}^{\frac{\pi}{4}} \int_{0}^{sec\theta} r^2 - (cos\theta + sin\theta)r^3 +(cos\theta sin\theta)r^4 \mathrm{d}r \mathrm{d}\theta} ;

or 8 0 π 4 s e c 3 θ 3 ( c o s θ + s i n θ ) s e c 4 θ 4 + ( c o s θ s i n θ ) s e c 5 θ 5 d r 8\displaystyle{\int_{0}^{\frac{\pi}{4}} \frac{sec^{3}\theta}{3} - (cos\theta + sin\theta)\frac{sec^{4}\theta}{4} +(cos\theta sin\theta)\frac{sec^{5}\theta}{5} \mathrm{d}r}

or 8 0 π 4 s e c 3 θ 3 s e c 3 θ 4 t a n θ sec 3 θ 4 + t a n θ s e c 3 θ 5 d r 8\displaystyle{\int_{0}^{\frac{\pi}{4}} \frac{sec^{3}\theta}{3} - \frac{sec^{3}\theta}{4} - \frac{tan\theta \sec^{3}\theta}{4} + \frac{tan\theta sec^{3}\theta}{5} \mathrm{d}r}

or 8 0 π 4 s e c 3 θ 12 t a n θ s e c 3 θ 20 d r 8\displaystyle{\int_{0}^{\frac{\pi}{4}} \frac{sec^{3}\theta}{12} - \frac{tan\theta sec^{3}\theta}{20} \mathrm{d}r}

or 8 [ 1 24 [ t a n θ s e c θ l n [ c o s ( θ 2 ) s i n ( θ 2 ) ] + l n [ c o s ( θ 2 ) + s i n ( θ 2 ) ] ] s e c 3 θ 60 ] 8 \cdot [\frac{1}{24} \cdot [tan\theta sec\theta - ln[cos(\frac{\theta}{2}) - sin(\frac{\theta}{2})] + ln[cos(\frac{\theta}{2}) + sin(\frac{\theta}{2})]] - \frac{sec^{3}\theta}{60}] for θ [ 0 , π 4 ] ; \theta \in [0, \frac{\pi}{4}];

or A = ( 2 + 2 ) + 5 l n ( 1 + 2 ) 15 0.521 . A = \frac{(2 + \sqrt{2}) + 5ln(1 + \sqrt{2})}{15} \approx \boxed{0.521}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...