Polar Infinity

Calculus Level 5

If the arc length of the polar curve r 2 = π cos ( 2 θ ) r^2=\pi\cos(2\theta) is

[ Γ ( a b + 1 ) ] b b 1 b \frac{\left [ \Gamma(-\frac ab + 1) \right ]^{\sqrt{b}}}{{b}^\frac{1}{b}}

for positive integers a a and b b . Find a + b a+b .


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Note that r r is unreal for θ ( π 4 , 3 π 2 ) ( 5 π 4 , 7 π 2 ) \theta \in \left(\frac \pi 4, \frac {3\pi} 2 \right) \cup \left(\frac {5\pi} 4, \frac {7\pi} 2 \right)

The arc length is given by:

L = 0 2 π r 2 + ( d r d θ ) 2 d θ As the curve is symmetrical at the origin = 4 0 π 4 π cos 2 θ + ( d d θ π cos 2 θ ) 2 d θ = 4 0 π 4 π cos 2 θ + ( π sin 2 θ cos 2 θ ) 2 d θ = 4 0 π 4 π cos 2 2 θ + π sin 2 2 θ cos 2 θ d θ = 4 π 0 π 4 1 cos 2 θ d θ Let x = 2 θ d x = 2 d θ = 2 π 0 π 2 1 cos x d x = 2 π 0 π 2 sin 0 x cos 1 2 x d x = π B ( 1 2 , 1 4 ) B ( m , n ) is beta function. = π Γ ( 1 2 ) Γ ( 1 4 ) Γ ( 3 4 ) Γ ( n ) is gamma function. = π π Γ ( 1 4 ) 2 π Γ ( 1 4 ) = ( Γ ( 1 4 ) ) 2 2 = [ Γ ( 3 4 + 1 ) ] 4 4 1 4 \begin{aligned} L & = \int_0^{2\pi} \sqrt{r^2+\left(\frac {dr}{d \theta} \right)^2} d \theta & \small {\color{#3D99F6}\text{As the curve is symmetrical at the origin}} \\ & = 4 \int_0^{\color{#D61F06}\frac \pi 4} \sqrt{\pi\cos 2 \theta +\left(\frac d{d \theta} \sqrt{\pi\cos 2 \theta} \right)^2} d \theta \\ & = 4 \int_0^{\frac \pi 4} \sqrt{\pi\cos 2 \theta +\left(-\frac {\sqrt \pi \sin 2\theta}{\sqrt{\cos 2 \theta}} \right)^2} d \theta \\ & = 4 \int_0^{\frac \pi 4} \sqrt{\frac {\pi\cos^2 2 \theta + \pi \sin^2 2\theta}{\cos 2 \theta}} d \theta \\ & = 4\sqrt \pi \int_0^{\frac \pi 4} \frac 1{\sqrt{\cos 2 \theta}} d \theta & \small {\color{#3D99F6}\text{Let }x = 2\theta \implies dx = 2 \ d\theta} \\ & = 2 \sqrt \pi \int_0^{\color{#D61F06}\frac \pi 2} \frac 1{\sqrt{\cos x}} dx \\ & = 2\sqrt \pi \int_0^{\frac \pi 2} \sin^0 x \cos^{-\frac 12} x \ dx \\ & = \sqrt \pi B \left(\frac 12, \frac 14 \right) & \small {\color{#3D99F6} B(m,n) \text{ is beta function.}} \\ & = \frac {\sqrt \pi \Gamma \left(\frac 12 \right)\Gamma \left(\frac 14 \right)}{\Gamma \left(\frac 34 \right)} & \small {\color{#3D99F6} \Gamma (n) \text{ is gamma function.}} \\ & = \frac {\sqrt \pi \cdot \sqrt \pi \cdot \Gamma \left(\frac 14 \right)}{\frac {\sqrt 2 \pi}{\Gamma \left(\frac 14 \right)}} \\ & = \frac {\left(\Gamma \left(\frac 14 \right)\right)^2}{\sqrt 2} \\ & = \frac {\left[\Gamma \left( - \frac 34 + 1 \right)\right]^{\sqrt 4}}{4^\frac 14} \end{aligned}

a + b = 3 + 4 = 7 \implies a+b = 3+4 = \boxed{7}

Sir this problem has to be reported,gamma(n)=(n-1)! only for integer n and moreover gamma(1/4) is transcendental and cannot be expressed in any factorial notation,and yes above you have mistakenly taken cos2x=sin2x!! Regards

Chirag Shyamsundar - 4 years, 7 months ago

Log in to reply

Thanks for your comments. I think gamma function was created to make factorial continuous so it should take all cases. Anyway, Wolfram Alpha takes the factorial valid.

I must have been too eager to find a solution and mistaken sin 2 θ \sin 2\theta as cos 2 θ \cos 2 \theta . Damn it! Now, I need to find a solution.

Chew-Seong Cheong - 4 years, 7 months ago

Got it right again. Same answer.

Chew-Seong Cheong - 4 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...