Polinomio del grado dos mil.

Algebra Level 4

Given that x + 1 x = 1 + 5 2 , x+\dfrac{1}{x} = \dfrac{1+\sqrt{5}}{2}, find the value of x 2000 + 1 x 2000 . x^{2000}+\dfrac{1}{x^{2000}}.


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

Matthew Yu
Aug 23, 2014

Notice the golden ratio. When applicable, geometry is very powerful in solving algebra problems. Consider a triangle A B C ABC with B = C = 2 π 5 \angle B = \angle C = \frac{2\pi}{5} and A = π 5 \angle A = \frac{\pi}{5} .

In A B C \triangle ABC notice that A B / B C AB/BC is the golden ratio. Using the law of sines A B B C = sin 2 π 5 sin π 5 = 2 sin π 5 cos π 5 sin π 5 = 2 cos π 5 \frac{AB}{BC} = \frac{\sin\frac{2\pi}{5}}{\sin\frac{\pi}{5}} = \frac{2\sin\frac{\pi}{5}\cos\frac{{\pi}}{5}}{\sin\frac{\pi}{5}} = 2\cos\frac{\pi}{5}

let x = e i θ , 1 x = e i θ x = e^{i\theta}, \frac{1}{x} = e^{-i\theta} , x + 1 x = 2 cos π 5 x+\frac{1}{x} = 2\cos\frac{\pi}{5}

x 2000 + 1 x 2000 = 2 cos 2000 π 5 x^{2000}+\frac{1}{x^{2000}} = 2\cos\frac{2000\pi}{5} = 2 cos 400 π = 2 = 2\cos400\pi = \boxed{2}

How come your solution is in English, but the problem is in Spanish??? Are you bilingual??? Wow !!

Jeremy Du - 6 years, 9 months ago

@Matthew Yu I changed the problem to english, so that most of the users could understand it.

Satvik Golechha - 6 years, 9 months ago

This problem is a duplicate of Matt's problem .

milind prabhu - 6 years, 9 months ago

Log in to reply

No, it is in Spanish

Fatrick Chao - 6 years, 9 months ago

@milind prabhu you should not say that it is a duplicate, the problem-poster might have not known that this problem has already appeared on the site.

Satvik Golechha - 6 years, 9 months ago

Exactly,Milind!

Anik Mandal - 6 years, 9 months ago
Tijmen Veltman
Aug 25, 2014

Let ϕ = 1 + 5 2 \phi=\frac{1+\sqrt{5}}2 . One can easily check that this number, also known as the golden ratio, satisfies ϕ 2 ϕ 1 = 0 \phi^2-\phi-1=0 . Substituting ϕ = x + 1 x \phi=x+\frac1x we obtain:

0 = x 2 x + 1 1 x + 1 x 2 = 1 x 2 ( x 4 x 3 + x 2 x + 1 ) = x 5 + 1 x 2 ( x + 1 ) . 0 =x^2-x+1-\frac1x+\frac1{x^2} =\frac1{x^2}(x^4-x^3+x^2-x+1) =\frac{x^5+1}{x^2(x+1)}.

We see that x 5 = 1 x^5=-1 , meaning that

x 2000 + 1 x 2000 = ( 1 ) 400 + 1 ( 1 ) 400 = 1 + 1 = 2 x^{2000}+\frac1{x^{2000}} =(-1)^{400}+\frac1{(-1)^{400}} =1+1=\boxed{2} .

Karim Mohamed
Aug 24, 2014

x + 1 x = 1 + 5 2 m u l t i p l y b y x . x 2 ( 1 + 5 2 ) x + 1 = 0 x = 1 + 5 2 ± ( 1 + 5 2 ) 2 4 2 x = 1 + 5 2 ± 6 + 2 5 4 4 2 , m u l t i p l y b y 2 2 x = 1 + 5 4 ± 2 5 10 4 n o t e t h a t 2 5 10 < 0 s o x s h o u l d b e w r i t t e n a s : x = 1 + 5 4 ± i 10 2 5 4 w e o b t a i n t h e m o d u l u s a n d a r g u m e n t o f t h i s c o m p l e x n u m b e r . r = ( 1 + 5 4 ) 2 + ( 10 2 5 4 ) 2 = 6 + 2 5 16 + 10 2 5 16 = 1 θ = tan 1 10 2 5 1 + 5 = 36 x = c o s ( 36 ) ± i s i n ( 36 ) . a c c o r d i n g t o d e m o i v r e s t h e o r e m : x 2000 = 1 2000 ( c o s ( 36 × 2000 ) ± i s i n ( 36 × 2000 ) ) = c o s ( 200 × 2 π ) ± i s i n ( 200 × 2 π ) = c o s ( 2 π ) ± i s i n ( 2 π ) = 1 + 0 = 1 x 2000 + 1 x 2000 = 1 + 1 1 = 2 x+\frac { 1 }{ x } =\frac { 1+\sqrt { 5 } }{ 2 } \\ multiply\quad by\quad x.\\ { x }^{ 2 }-(\frac { 1+\sqrt { 5 } }{ 2 } )x+1=0\\ \therefore \quad x=\frac { \frac { 1+\sqrt { 5 } }{ 2 } \pm \sqrt { { (\frac { 1+\sqrt { 5 } }{ 2 } ) }^{ 2 }-4 } }{ 2 } \\ x=\frac { \frac { 1+\sqrt { 5 } }{ 2 } \pm \sqrt { \frac { 6+2\sqrt { 5 } }{ 4 } -4 } }{ 2 } ,\quad multiply\quad by\quad \frac { 2 }{ 2 } \\ x=\frac { 1+\sqrt { 5 } }{ 4 } \pm \quad \frac { \sqrt { 2\sqrt { 5 } -10 } }{ 4 } \\ note\quad that\quad 2\sqrt { 5 } -10\quad <0\\ so\quad x\quad should\quad be\quad written\quad as:\\ x=\frac { 1+\sqrt { 5 } }{ 4 } \pm \quad \frac { i\sqrt { 10-2\sqrt { 5 } } }{ 4 } \\ we\quad obtain\quad the\quad modulus\quad and\quad argument\quad of\quad this\quad complex\quad number.\\ r=\sqrt { { (\frac { 1+\sqrt { 5 } }{ 4 } ) }^{ 2 }+{ (\quad \frac { \sqrt { 10-2\sqrt { 5 } } }{ 4 } ) }^{ 2 } } \\ \quad =\sqrt { \frac { 6+2\sqrt { 5 } }{ 16 } +\frac { 10-2\sqrt { 5 } }{ 16 } } =1\\ \theta =\tan ^{ -1 }{ \frac { \sqrt { 10-2\sqrt { 5 } } }{ 1+\sqrt { 5 } } } =36\\ \therefore \quad x=cos(36)\pm i\quad sin(36).\\ according\quad to\quad de-moivre's\quad theorem:\\ { x }^{ 2000 }={ 1 }^{ 2000 }(cos(36\times 2000)\pm i\quad sin(36\times 2000))\\ \quad \quad \quad =cos(200\times 2\pi )\pm i\quad sin(200\times 2\pi )\\ \quad \quad \quad =cos(2\pi )\pm i\quad sin(2\pi )\\ \quad \quad \quad =1+0=1\\ \\ \therefore \quad { x }^{ 2000 }+\frac { 1 }{ { x }^{ 2000 } } =1+\frac { 1 }{ 1 } =\boxed { \quad 2\quad }

same way! .

Aareyan Manzoor - 6 years, 4 months ago
Dylan Cope
Sep 16, 2014

Solving the given equation as a quadratic equation you find that the solutions of x x is complex. Hence z n + 1 z n = 2 cos n θ {z}^{n}+\frac{1}{{z}^{n}}=2\cos n\theta is applicable (which is a formula derived from de Moirve's theorem). Using the given equation you can solve this for n = 1 n=1 and find θ \theta . 2 cos θ = 1 + 5 2 θ = π 5 2\cos \theta=\frac{1+\sqrt{5}}{2}\therefore\theta=\frac{\pi}{5} . Hence you can plug this value back into z n + 1 z n = 2 cos n θ {z}^{n}+\frac{1}{{z}^{n}}=2\cos n\theta for n = 2000 n=2000 to get x 2000 + 1 x 2000 = 2 cos 2000 π 5 = 2 {x}^{2000}+\frac{1}{{x}^{2000}}=2\cos 2000\frac{\pi}{5}=2 .

Mvs Saketh
Sep 13, 2014

simple ,, let x=cos a + i sin a and then u have 1/x= cos a - i sin a (i am assuming modulus of x as 1 here ) then we have 2 cos a = 1+root5/2 so which clearly tells a is 36 degrees, now write down x in complex number form and use demouvires theorem to get the value of Re(e^(i2000a))= 1 ,,, hence adding the real parts of x and 1/x ,, we get 2

Akhilesh Vibhute
Dec 9, 2015

Let x=cos∆+isin∆ =>∆ is 36° so GE =2cos2000∆ which is nothing but 2

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...