Polka Dots in Pi

Geometry Level 4

In the figure, A B C D ABCD is a square of side length a a units and E , F , G , H E,F,G,H are the midpoints of the sides.

E A H , F B E , G C F , H D G EAH, FBE,GCF,HDG are quadrants. There are two semicicles with diameters A D AD and B C BC .

If the area of the shaded region in red can be expressed in the form

a 2 x ( y π z ) \dfrac{a^2}x \left( \sqrt y - \dfrac\pi z\right)

then submit x y z \dfrac {xy} z as your answer.


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Akshat Sharda
Jan 23, 2016

Area of Yellow region,

= 1 6 π a 2 4 1 2 sin 6 0 a 2 4 = a 2 8 ( π 3 3 2 ) \begin{aligned} & =\frac{1}{6}\cdot \frac{\pi a^2}{4}-\frac{1}{2} \cdot \sin 60^\circ \cdot \frac{a^2}{4} \\ & =\frac{a^2}{8}\left( \frac{\pi}{3}-\frac{\sqrt{3}}{2}\right) \end{aligned}

Area of 1 red region = Sector PHQ - 2 Yellow regions.

= 1 6 π a 2 4 2 ( a 2 8 ( π 3 3 2 ) ) = 1 24 π a 2 1 12 π a 2 + 3 8 a 2 = 3 8 1 24 π a 2 = a 2 8 ( 3 π 3 ) \begin{aligned} & = \frac{1}{6} \cdot \frac{\pi a^2}{4} -2\left( \frac{a^2}{8}\left( \frac{\pi}{3}-\frac{\sqrt{3}}{2}\right) \right) \\ & = \frac{1}{24}\pi a^2 -\frac{1}{12} \pi a^2 +\frac{\sqrt{3}}{8} a^2 \\ & = \frac{\sqrt{3}}{8}-\frac{1}{24}\pi a^2 \\ & = \frac{a^2}{8}\left(\sqrt{3}-\frac{\pi}{3}\right )\end{aligned}

So the total red area,

= 2 a 2 8 ( 3 π 3 ) = a 2 4 ( 3 π 3 ) 4 3 3 = 4 =2\cdot \frac{a^2}{8}\left(\sqrt{3}-\frac{\pi}{3}\right) = \frac{a^2}{4}\left(\sqrt{3}-\frac{\pi}{3}\right ) \\ \Rightarrow \frac{4\cdot 3}{3} =\boxed{4}

Exactly Same Way.

Kushagra Sahni - 5 years, 4 months ago

What a lovely solution

Sita Ram - 4 years, 3 months ago

Consider one fourth of the square as shown in the sketch. It is a square with sides a = 2r. The quarter circles ABD and CBE are with radii r. r = C D = C B = B D . C B D i s a n e q u v i l a t e r a l Δ . B D C = D C B = 60 , b u t D C A = 90 , B C A = 30. Areas   1=(1+2) - (2+3) + 3 A r e a 1 + 2 = π r 2 30 360 , A r e a 2 + 3 = π r 2 60 360 , A r e a 3 = 3 r 2 4 . A r e a 1 = π r 2 30 360 π r 2 60 360 + 3 r 2 4 = 3 r 2 4 π r 2 30 360 . T o t a l R e d a r e a f r o m g i v e n d i a g r a m = 4 { 3 ( a 2 ) 2 4 π ( a 2 ) 2 12 . } a 2 4 ( 3 π 3 ) , 4 3 3 = 4 \text{Consider one fourth of the square as shown in the sketch. It is a square with sides a = 2r.}\\ \text{The quarter circles ABD and CBE are with radii r.}\\ \therefore r = CD = CB = BD. ~ \implies~ CBD~ is ~an ~ equvilateral~\Delta.\\ \implies \angle BDC=\angle DCB=60~, but ~\angle DCA=90,~~ \therefore ~ \angle BCA=30.\\ \text{Areas~~ 1=(1+2) - (2+3) + 3 }\\ Area ~ 1+2=\dfrac{\pi*r^2*30}{360},~~~Area ~ 2 + 3=\dfrac{\pi*r^2*60}{360},~~~Area ~ 3=\dfrac{\sqrt3*r^2} 4.\\ \therefore~Area ~1=\dfrac{\pi*r^2*30}{360} - \dfrac{\pi*r^2*60}{360} +\dfrac{\sqrt3*r^2} 4=\dfrac{\sqrt3*r^2} 4 - \dfrac{\pi*r^2*30}{360}.\\ Total ~Red ~ area~from ~given ~diagram ~=4*\{\dfrac{\sqrt3*(\frac a 2)^2} 4- \dfrac{\pi*(\frac a 2)^2}{12}.\}\\ \dfrac{a^2} 4*(\sqrt3- \dfrac \pi 3), ~~~\dfrac{4*3} 3=\Large ~~\color{#D61F06}{4}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...