Polygon Inscribed in a Circle

Geometry Level 2

A regular polygon is inscribed in a circle whose area is approximately 530.9292 square units. If the area within the circle that is outside the polygon is around 12 square units, how many sides does the polygon have?

6 24 23 17

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Find the radius, R R , of the circumscribing circle

π R 2 = 530.9292 R = 13 \pi { R }^{ 2 }\quad =\quad 530.9292\\ \Rightarrow \quad R\quad =\quad 13

The area of a regular polygon inscribed in a circle is given by

  • n n is the number of sides
  • r r is the radius of the circumscribing circle

A = n 2 r 2 sin ( 360 º n ) A\quad =\quad \frac { n }{ 2 } { r }^{ 2 }\sin { \left( \frac { { 360 }º }{ n } \right) }

The area of the circle minus the area of the polygon is the area within the circle that is outside the polygon

π R 2 n 2 R 2 sin ( 360 º n ) = 12 \pi { R }^{ 2 }\quad -\quad \frac { n }{ 2 } { R }^{ 2 }\sin { \left( \frac { { 360 }º }{ n } \right) } \quad =\quad 12

Solving for n n , we get

n 2 R 2 sin ( 360 º n ) = π R 2 12 n sin ( 360 º n ) = 2 ( π R 2 12 ) R 2 = 2 ( π ( 13 ) 2 12 ) 13 2 6.14... \frac { n }{ 2 } { R }^{ 2 }\sin { \left( \frac { { 360 }º }{ n } \right) } \quad =\quad \pi { R }^{ 2 }\quad -\quad 12\\ \Rightarrow \quad n\sin { \left( \frac { { 360 }º }{ n } \right) } \quad =\quad \frac { 2\left( \pi { R }^{ 2 }\quad -\quad 12 \right) }{ { R }^{ 2 } } \quad =\quad \frac { 2\left( \pi { \left( 13 \right) }^{ 2 }\quad -\quad 12 \right) }{ { 13 }^{ 2 } } \quad \approx \quad 6.14...

Among the choices, only 17 \boxed { 17 } works.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...