Polygons Inscribed In Polygons

Geometry Level pending

An analogy of the problem below is the octagon inscribed in the 16-gon above.

Let n n be a positive integer and n 3 n \geq 3 .

Let A 1 , A 2 , . . . , A 2 n A_{1}, A_{2}, ...,A_{2^n} be the vertices of a regular 2 n 2^n -gon.

Connect the midpoints m ( j ) = A 2 j 1 + A 2 j 2 m(j) = \dfrac{A_{2j - 1} + A_{2j}}{2} , where ( 1 j 2 n 1 ) (1 \leq j \leq 2^{n - 1}) , to form a 2 n 1 2^{n - 1} -gon.

Let A 2 n A_{2^n} be the area of the 2 n 2^n -gon and A 2 n 1 A_{2^{n - 1}} be the area of the 2 n 1 2^{n - 1} -gon.

Find A 2 n 1 A 2 n \dfrac{A_{2^{n - 1}}}{A_{2^n}} , then using n = 10 n = 10 find A 512 A 1024 \dfrac{A_{512}}{A_{1024}} to 9 9 decimal places.


The answer is 0.999971763.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Dec 30, 2017

For 2 n 2^n -gon:

Let B C = x BC = x be a side of the 2 n g o n 2^n - gon , A C = A B = r AC = AB= r , A D = h AD = h , and B A D = π 2 n \angle{BAD} = \dfrac{\pi}{2^n} .

x 2 = r sin ( π 2 n ) r = x 2 sin ( π 2 n ) h = x 2 cot ( π 2 n ) A 2 n = 2 n 2 c o t ( π 2 n ) x 2 \dfrac{x}{2} = r\sin(\dfrac{\pi}{2^n}) \implies r = \dfrac{x}{2\sin(\dfrac{\pi}{2^n})} \implies h = \dfrac{x}{2}\cot(\dfrac{\pi}{2^n}) \implies A_{2^n} = 2^{n - 2} cot(\dfrac{\pi}{2^n}) x^2 .

For 2 n 1 2^{n - 1} -gon:

Let B C = L BC = L and A D = h AD = h^{*} .

A C = A B = h = x 2 cot ( π 2 n ) AC = AB = h = \dfrac{x}{2}\cot(\dfrac{\pi}{2^n}) and B A C = π 2 n 1 + π 2 n + π 2 n = π 2 n 2 B A D = π 2 n 1 \angle{BAC} = \dfrac{\pi}{2^{n - 1}} + \dfrac{\pi}{2^n} + \dfrac{\pi}{2^n} = \dfrac{\pi}{2^{n - 2}} \implies\angle{BAD} = \dfrac{\pi}{2^{n - 1}} \implies . L = x cot ( π 2 n ) sin ( π 2 n 1 ) h = x 2 cot ( π 2 n ) cos ( π 2 n 1 ) A 2 n 1 = 1 2 ( 2 n 3 cot 2 ( π 2 n ) sin ( π 2 n 2 ) x 2 ) L = x\cot(\dfrac{\pi}{2^n})\sin(\dfrac{\pi}{2^{n - 1}}) \implies h^{*} = \dfrac{x}{2} \cot(\dfrac{\pi}{2^n})\cos(\dfrac{\pi}{2^{n - 1}}) \implies A_{2^{n - 1}} = \dfrac{1}{2} * (2^{n - 3}\cot^2(\dfrac{\pi}{2^n})\sin(\dfrac{\pi}{2^{n - 2}}) x^2) \implies

A 2 n 1 A 2 n = 1 4 ( cot ( π 2 n ) sin ( π 2 n 2 ) ) \dfrac{A_{2^{n - 1}}}{A_{2^n}} = \dfrac{1}{4} * (\cot(\dfrac{\pi}{2^n}) \sin(\dfrac{\pi}{2^{n - 2}})) .

Rewriting this as A 2 n 1 A 2 n = cos 2 ( π 2 n ) cos ( π 2 n 1 ) \dfrac{A_{2^{n - 1}}}{A_{2^n}} = \cos^2(\dfrac{\pi}{2^n})\cos(\dfrac{\pi}{2^{n - 1}}) lim n A 2 n 1 A 2 n = 1. \implies \lim_{n \rightarrow \infty} \dfrac{A_{2^{n - 1}}}{A_{2^n}} = 1.

For n = 10 A 512 A 1024 = 0.999971763 n = 10 \implies \dfrac{A_{512}}{A_{1024}} = \boxed{0.999971763}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...