Polylog

Calculus Level 5

k = 1 [ Li 2 k ( 1 4 ) 1 4 ] = A B C D ln 2 + C E ln 3 \large \sum _{k=1}^{\infty }\left[\text{Li}_{2k}\left(\frac 14 \right) - \frac 14\right]=\frac{A}{B}-\frac{C}{D}\ln 2+\frac{C}{E}\ln 3

The equation above holds true for positive integers A , B , C , D A,B,C,D and E E , where gcd ( A , B ) = gcd ( C , D ) = gcd ( C , E ) = 1 \gcd(A,B)=\gcd(C,D)=\gcd(C,E)=1 .

Find A + B + C + D + E A+B+C+D+E .

Notation : Li n ( a ) { \text{Li} }_{ n }(a) denotes the polylogarithm function, Li n ( a ) = k = 1 a k k n { \text{Li} }_{ n }(a)=\displaystyle\sum _{ k=1 }^{ \infty }{ \dfrac { { a }^{ k } }{ { k }^{ n } } } .


The answer is 52.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Jun 11, 2016

k = 1 ( L i 2 k ( 1 4 ) 1 4 ) = k = 1 ( n = 1 1 n 2 k 4 n 1 4 ) = k = 1 n = 2 1 n 2 k 4 n = n = 2 k = 1 1 n 2 k 4 n = n = 2 1 ( n 2 1 ) 4 n = n = 2 1 2 2 n + 1 ( 1 n 1 1 n + 1 ) = n = 1 1 n 2 2 n + 3 n = 3 1 n 2 2 n 1 = 1 8 ln 3 4 + 1 2 + 1 16 + 2 ln 3 4 = 9 16 15 4 ln 2 + 15 8 ln 3 \begin{array}{rcl} \displaystyle \sum_{k=1}^\infty \left(\mathrm{Li}_{2k}\big(\tfrac14\big) - \tfrac14\right) & = & \displaystyle \sum_{k=1}^\infty \left(\sum_{n=1}^\infty \frac{1}{n^{2k}4^n} - \tfrac14\right) \\ & = & \displaystyle \sum_{k=1}^\infty \sum_{n=2}^\infty \frac{1}{n^{2k}4^n} \; =\; \sum_{n=2}^\infty \sum_{k=1}^\infty \frac{1}{n^{2k}4^n} \\ & = & \displaystyle \sum_{n=2}^\infty \frac{1}{(n^2-1)4^n} \; = \; \sum_{n=2}^\infty \frac{1}{2^{2n+1}}\left(\frac{1}{n-1} - \frac{1}{n+1}\right) \\ & = &\displaystyle \sum_{n=1}^\infty \frac{1}{n2^{2n+3}} - \sum_{n=3}^\infty \frac{1}{n2^{2n-1}} \; = \; -\tfrac18\ln\tfrac34 + \tfrac12 + \tfrac{1}{16} + 2\ln\tfrac34 \\ & = & \tfrac{9}{16} - \tfrac{15}{4}\ln2 + \tfrac{15}{8}\ln3 \end{array} making the answer 9 + 16 + 15 + 4 + 8 = 52 9+16+15+4+8 = \boxed{52} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...