Symmetric Logarithms

Algebra Level 3

Given that log x y z = log y z x = log z x y \frac { \log x }{y-z} = \frac { \log y }{z-x} = \frac { \log z }{x-y} . What is the value of x x y y z z x^x \cdot y^y \cdot z^z ?

log ( x x y y z z ) \log { \left ( { x }^{ x } { y }^{ y } { z }^{ z } \right ) } 0 1 1 x + y + z x+y+z

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ronak Agarwal
Aug 22, 2014

l o g ( x ) y z = l o g ( y ) z x = l o g ( z ) x y = k \frac { log(x) }{ y-z } =\frac { log(y) }{ z-x } =\frac { log(z) }{ x-y } =k

Hence we have : l o g ( x ) = ( y z ) k log(x)=(y-z)*k

l o g ( y ) = ( z x ) k log(y)=(z-x)*k

l o g ( z ) = ( x y ) k log(z)=(x-y)*k

So we write :

x l o g ( x ) + y l o g ( y ) + z l o g ( z ) = x ( y z ) k + y ( z x ) k + z ( x y ) k = 0 xlog(x)+ylog(y)+zlog(z)=x(y-z)k+y(z-x)k+z(x-y)k=0

l o g ( x x y y z z ) = 0 \Rightarrow log({ x }^{ x }{ y }^{ y }{ z }^{ z })=0

Finally x x y y z z = 1 {x}^{x}{y}^{y}{z}^{z}=1

Just the way you do it

Satyajit Ghosh - 6 years, 9 months ago

Log in to reply

Yes Same way. A fifteen booklet question:p

Kushagra Sahni - 6 years, 9 months ago

I mean Fiitjee

Kushagra Sahni - 6 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...