Polylogs!

Calculus Level 5

0 1 Li 2 ( x 3 ) x 2 d x \large \int _{ 0 }^{ 1 }{ \dfrac {\text{Li}_2(x^3) }{ x^{ 2 } } \, dx }

if the above integral is in the form a ln b π c d 1 6 π f , a\ln { \sqrt { b } } -\dfrac { \pi \sqrt { c } }{ d } -\dfrac16 { \pi }^{ f },

where a , b , c , d a,b,c,d and f f are positive integers, find a + b + c + d + f a+b+c+d+f .

Notation :
Li n ( a ) { \text{Li} }_{ n }(a) denotes the polylogarithm function, Li n ( a ) = k = 1 a k k n . { \text{Li} }_{ n }(a)=\displaystyle\sum _{ k=1 }^{ \infty }{ \frac { { a }^{ k } }{ { k }^{ n } } }.


The answer is 19.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
May 6, 2016

We have 0 1 L i 2 ( x 3 ) x 2 d x = 0 1 n = 1 x 3 n 2 n 2 d x = n = 1 1 n 2 ( 3 n 1 ) = n = 1 ( 9 3 n 1 3 n 1 n 2 ) = 3 n = 1 ( 1 n 1 3 1 n ) ζ ( 2 ) = 3 lim n ( ψ ( 1 ) ψ ( n ) ψ ( 2 3 ) + ψ ( n 1 3 ) ) ζ ( 2 ) = 3 ( ψ ( 1 ) ψ ( 2 3 ) ) ζ ( 2 ) = 3 ( 3 2 ln 3 1 2 3 π ) ζ ( 2 ) = 9 ln 3 1 2 π 3 1 6 π 2 \begin{array}{rcl} \displaystyle \int_0^1 \frac{\mathrm{Li}_2(x^3)}{x^2}\,dx & = & \displaystyle \int_0^1 \sum_{n=1}^\infty \frac{x^{3n-2}}{n^2}\,dx \\ & = & \displaystyle \sum_{n=1}^\infty \frac{1}{n^2(3n-1)} \; = \; \sum_{n=1}^\infty \left( \frac{9}{3n-1} - \frac{3}{n} - \frac{1}{n^2}\right) \\ & = & \displaystyle 3\sum_{n=1}^\infty \left(\frac{1}{n-\frac13} - \frac{1}{n}\right) - \zeta(2) \\ & = & \displaystyle 3\lim_{n\to\infty} \left(\psi(1) - \psi(n) - \psi(\tfrac23) + \psi(n-\tfrac13)\right) - \zeta(2) \\ & = & \displaystyle 3\big(\psi(1) -\psi(\tfrac23)\big) - \zeta(2) \; = \; 3\left(\tfrac32\ln3 - \tfrac{1}{2\sqrt{3}}\pi\right) - \zeta(2) \\ & = & 9\ln\sqrt{3} - \tfrac12\pi\sqrt{3} - \tfrac16\pi^2 \end{array} making the answer 19 \boxed{19} .

exactly as intended!

Hamza A - 5 years, 1 month ago

Using the definition of Polylog function in terms of series we arrive at:-

r = 1 0 1 x 3 r 2 r 2 d x \displaystyle \sum_{r=1}^{\infty}\int_{0}^{1} \frac{x^{3r-2}}{r^{2}}dx

= r = 1 1 r 2 ( 3 r 1 ) = 9 r = 1 1 ( 3 r ) 2 ( 3 r 1 ) = 9 r = 1 ( 1 3 r ( 1 3 r 1 1 3 r ) ) \displaystyle =\sum_{r=1}^{\infty}\frac{1}{r^{2}(3r-1)}=9\sum_{r=1}^{\infty}\frac{1}{(3r)^{2}(3r-1)} = 9\sum_{r=1}^{\infty}\left(\frac{1}{3r}\left(\frac{1}{3r-1}-\frac{1}{3r}\right)\right)

= r = 1 ( 9 ( 3 r ) ( 3 r 1 ) 9 9 r 2 ) = r = 1 9 ( 3 r ) ( 3 r 1 ) r = 1 1 r 2 \displaystyle =\sum_{r=1}^{\infty} \left(\frac{9}{(3r)(3r-1)} - \frac{9}{9r^{2}}\right) =\sum_{r=1}^{\infty}\frac{9}{(3r)(3r-1)} - \sum_{r=1}^{\infty}\frac{1}{r^{2}} [Both series are convergent by Limit Comparison test with n = 1 1 n 2 \sum_{n=1}^{\infty}\frac{1}{n^{2}} ]

r = 0 ( 9 ( 3 r + 3 ) ( 3 r + 2 ) ) π 2 6 \displaystyle \sum_{r=0}^{\infty}\left(\frac{9}{(3r+3)(3r+2)}\right) - \frac{\pi^{2}}{6}

Let us look at the summation r = 0 1 ( 3 r + 3 ) ( 3 r + 2 ) = r = 0 ( 1 3 r + 2 1 3 r + 3 ) \displaystyle \sum_{r=0}^{\infty}\frac{1}{(3r+3)(3r+2)} = \sum_{r=0}^{\infty}\left(\frac{1}{3r+2}-\frac{1}{3r+3}\right)

We know 1 1 x = r = 0 x r \displaystyle \frac{1}{1-x} = \sum_{r=0}^{\infty} x^{r} for 1 < x < 1 \displaystyle -1<x<1

So 1 1 x 3 = r = 0 x 3 r \displaystyle \frac{1}{1-x^{3}} = \sum_{r=0}^{\infty} x^{3r}

So x 1 x 3 = r = 0 x 3 r + 1 \displaystyle \frac{x}{1-x^{3}} = \sum_{r=0}^{\infty} x^{3r+1}

So 0 1 x 1 x 3 d x = r = 0 0 1 x 3 r + 1 d x = r = 0 1 3 r + 2 \displaystyle \int_{0}^{1}\frac{x}{1-x^{3}}dx = \sum_{r=0}^{\infty} \int_{0}^{1}x^{3r+1}dx = \sum_{r=0}^{\infty}\frac{1}{3r+2}

Similarly 0 1 x 2 1 x 3 d x = r = 0 1 3 r + 3 \displaystyle \int_{0}^{1}\frac{x^{2}}{1-x^{3}}dx = \sum_{r=0}^{\infty}\frac{1}{3r+3}

So we have r = 0 ( 1 3 r + 2 1 3 r + 3 ) = 0 1 x x 2 1 x 3 d x = 0 1 x 1 + x + x 2 d x \displaystyle \sum_{r=0}^{\infty}\left(\frac{1}{3r+2}-\frac{1}{3r+3}\right) = \int_{0}^{1}\frac{x-x^{2}}{1-x^{3}}dx =\int_{0}^{1}\frac{x}{1+x+x^{2}}dx

= 1 2 0 1 ( 2 x + 1 1 + x + x 2 1 1 + x + x 2 ) d x = ln ( 3 ) 2 π 6 3 \displaystyle = \frac{1}{2}\int_{0}^{1}\left(\frac{2x+1}{1+x+x^{2}} - \frac{1}{1+x+x^{2}}\right)\,dx = \frac{\ln(3)}{2} -\frac{\pi}{6\sqrt{3}}

So our answer is 9 ln ( 3 ) π 3 2 π 2 6 \displaystyle 9\ln(\sqrt{3}) - \frac{\pi \cdot \sqrt{3}}{2} - \frac{\pi^{2}}{6}

Note :- The evaluation of the two integrals and the justification of why r = 1 1 r 2 = π 2 6 \sum_{r=1}^{\infty}\frac{1}{r^{2}} = \frac{\pi^{2}}{6} , I leave both of them to the readers of the solution .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...