∫ 0 1 x 2 Li 2 ( x 3 ) d x
if the above integral is in the form a ln b − d π c − 6 1 π f ,
where a , b , c , d and f are positive integers, find a + b + c + d + f .
Notation
:
Li
n
(
a
)
denotes the
polylogarithm
function,
Li
n
(
a
)
=
k
=
1
∑
∞
k
n
a
k
.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
exactly as intended!
Using the definition of Polylog function in terms of series we arrive at:-
r = 1 ∑ ∞ ∫ 0 1 r 2 x 3 r − 2 d x
= r = 1 ∑ ∞ r 2 ( 3 r − 1 ) 1 = 9 r = 1 ∑ ∞ ( 3 r ) 2 ( 3 r − 1 ) 1 = 9 r = 1 ∑ ∞ ( 3 r 1 ( 3 r − 1 1 − 3 r 1 ) )
= r = 1 ∑ ∞ ( ( 3 r ) ( 3 r − 1 ) 9 − 9 r 2 9 ) = r = 1 ∑ ∞ ( 3 r ) ( 3 r − 1 ) 9 − r = 1 ∑ ∞ r 2 1 [Both series are convergent by Limit Comparison test with ∑ n = 1 ∞ n 2 1 ]
r = 0 ∑ ∞ ( ( 3 r + 3 ) ( 3 r + 2 ) 9 ) − 6 π 2
Let us look at the summation r = 0 ∑ ∞ ( 3 r + 3 ) ( 3 r + 2 ) 1 = r = 0 ∑ ∞ ( 3 r + 2 1 − 3 r + 3 1 )
We know 1 − x 1 = r = 0 ∑ ∞ x r for − 1 < x < 1
So 1 − x 3 1 = r = 0 ∑ ∞ x 3 r
So 1 − x 3 x = r = 0 ∑ ∞ x 3 r + 1
So ∫ 0 1 1 − x 3 x d x = r = 0 ∑ ∞ ∫ 0 1 x 3 r + 1 d x = r = 0 ∑ ∞ 3 r + 2 1
Similarly ∫ 0 1 1 − x 3 x 2 d x = r = 0 ∑ ∞ 3 r + 3 1
So we have r = 0 ∑ ∞ ( 3 r + 2 1 − 3 r + 3 1 ) = ∫ 0 1 1 − x 3 x − x 2 d x = ∫ 0 1 1 + x + x 2 x d x
= 2 1 ∫ 0 1 ( 1 + x + x 2 2 x + 1 − 1 + x + x 2 1 ) d x = 2 ln ( 3 ) − 6 3 π
So our answer is 9 ln ( 3 ) − 2 π ⋅ 3 − 6 π 2
Note :- The evaluation of the two integrals and the justification of why ∑ r = 1 ∞ r 2 1 = 6 π 2 , I leave both of them to the readers of the solution .
Problem Loading...
Note Loading...
Set Loading...
We have ∫ 0 1 x 2 L i 2 ( x 3 ) d x = = = = = = ∫ 0 1 n = 1 ∑ ∞ n 2 x 3 n − 2 d x n = 1 ∑ ∞ n 2 ( 3 n − 1 ) 1 = n = 1 ∑ ∞ ( 3 n − 1 9 − n 3 − n 2 1 ) 3 n = 1 ∑ ∞ ( n − 3 1 1 − n 1 ) − ζ ( 2 ) 3 n → ∞ lim ( ψ ( 1 ) − ψ ( n ) − ψ ( 3 2 ) + ψ ( n − 3 1 ) ) − ζ ( 2 ) 3 ( ψ ( 1 ) − ψ ( 3 2 ) ) − ζ ( 2 ) = 3 ( 2 3 ln 3 − 2 3 1 π ) − ζ ( 2 ) 9 ln 3 − 2 1 π 3 − 6 1 π 2 making the answer 1 9 .