Let f ( x ) = x 4 + a x 3 + b x 2 + c x + d , for that a , b , c , d are constants. If f ( 1 ) = 1 9 9 3 , f ( 2 ) = 3 9 8 6 , f ( 3 ) = 5 9 7 9 . Calculate the value of 4 1 [ f ( 1 1 ) + f ( − 7 ) ] .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Nice solution!
Hi, can someone please explain where does the ( x − 1 ) ( x − 2 ) ( x − 3 ) ( x + α ) + 1 9 9 3 x come from?
Log in to reply
Since f ( x ) = 1 9 9 3 x for x = 1 , 2 , 3 . We can think of f ( x ) as f ( x ) = ( x − 1 ) ( x − 2 ) ( x − 3 ) g ( x ) + 1 9 9 3 x . Notice that ( x − 1 ) ( x − 2 ) ( x − 3 ) g ( x ) = 0 , when x = 1 , 2 , 3 , therefore leaving f ( x ) = 1 9 9 3 x , when x = 1 , 2 , 3 . Since f ( x ) is a 4 t h degree polynomial whose highest power of x is 4 , g ( x ) must be of the 1 s t degree, because ( x − 1 ) ( x − 2 ) ( x − 3 ) is of the 3 r d degree. That is g ( x ) is of the form g ( x ) = β x + α . And since f ( x ) is a monolithic polynomial. that is the coefficient of x of the highest power ( x 4 ) is 1 . Therefore, β must be 1 , this implies g ( x ) = x + α .
f ( x ) = ( x − 1 ) ( x − 2 ) ( x − 3 ) ( x + α ) + 1 9 9 3 x
= x 4 + ( 1 + 2 + 3 + α ) x 3 + ( 1 ˙ 2 + 2 ˙ 3 + 3 ˙ 1 + 1 ˙ α + 2 ˙ α + 3 ˙ α ) x 2 + ( 1 ˙ 2 ˙ 3 + 1 ˙ 2 ˙ α + 1 ˙ 3 ˙ α + 2 ˙ 3 ˙ α + 1 9 9 3 ) x + 1 ˙ 2 ˙ 3 ˙ α
= x 4 + ( 6 + α ) x 3 + ( 1 1 + 6 α ) x 2 + ( 1 9 9 9 + 1 1 α ) x + 6 α
Please note that f ( x ) = x 4 + ( 6 + α ) x 3 + ( 1 1 + 6 α ) x 2 + ( 1 9 9 9 + 1 1 α ) x + 6 α is of the form: f ( x ) = x 4 + a x 3 + b x 2 + c x + d .
Pedro, you may want to practice more on polynomial on brilliant.org, such as: https://brilliant.org/practice/factor-polynomials-higher-degress/?subtopic=polynomials&chapter=polynomial-factoring
Let g ( x ) = f ( x ) − x 4 . Then g ( 1 ) = 1 9 9 2 , g ( 2 ) = 3 9 7 0 , and g ( 3 ) = 5 8 9 8 . Using an interpolating polynomial on this data set, we get g ( x ) = − 2 5 x 2 + 2 0 5 3 x − 3 6 , so f ( x ) = x 4 − 2 5 x 2 + 2 0 5 3 x − 3 6 . Now compute 4 f ( 1 1 ) + f ( − 7 ) = 5 2 3 3 .
Nice solution! I did the same once I noticed that x 4 reduces the problem.
insert 1,2,3 into the polynomial and we get ⎩ ⎪ ⎨ ⎪ ⎧ a + b + c + d = 1 9 9 2 8 a + 4 b + 2 c + d = 3 9 7 0 − − − − − ( 1 ) 2 7 a + 9 b + 3 c + d = 5 8 9 8 subtract 1 from 2, and 2 from 3. we get { 7 a + 3 b + c = 1 9 7 8 1 9 a + 5 a + c = 1 9 2 8 again subtract to get 1 2 a + 2 b = − 5 0 − − − ( 2 ) now expand f ( 1 1 ) + f ( − 7 ) = 1 4 6 4 1 + 1 3 3 1 a + 1 2 1 b + 1 1 c + d + 2 4 0 1 − 3 4 3 a + 4 9 b − 7 c + d f ( 1 1 ) + f ( − 7 ) = 1 7 0 4 2 + 9 8 8 a + 1 7 0 b + 2 ( 2 c + d ) from ---(1), 2 c + a = 3 9 7 0 − 8 a − 4 a , sustitute to get f ( 1 1 ) + f ( − 7 ) = 1 7 0 4 2 + 9 8 8 a + 1 7 0 b + 7 9 4 0 − 1 6 a − 8 b f ( 1 1 ) + f ( − 7 ) = 2 4 9 8 2 + 8 1 ( 1 2 a + 2 b ) substitute from---(2) f ( 1 1 ) + f ( − 7 ) = 2 4 9 8 2 + 8 1 × − 5 0 f ( 1 1 ) + f ( − 7 ) = 2 0 9 3 2 now 4 1 × 2 0 9 3 2 = 5 2 3 3
a+b+c+d=1992 (1) , 8a+4b+2c+d=3970 (2) , 27a+9a+3c+d=5898 (3) 1/4(f(11)+f(-7))=1/4(14641+1331a+121b+11c+d+2401-343a+49b-7c+d)= 1/4(17042+988a+170b+4c+2d)= 1/2(8521+494a+85b+2c+d)
Now we want to try to express 494a+85b+2c+d (4) as linear combination of left sides of equalities (1),(2) and (3).
(4)=x(1)+y(2)+z(3) which means
27x+8y+z=494 , 9x+4y+z=85 , 3x+2y+z=2 , x+y+z=1
System become x+y+z=1 , 2x+y=1 ,8x+3y=84 , 26x+7y=0
And finally x+y+z=1 , 2x+y=1 , 2x=81 , 12x=486
That means x=40.5 , y=-80 and z=40.5 ,so we can express (4) as combination (1),(2),(3). (4)=40.5(1)-80(2)+40.5(3) so we get
1/2(8521+494a+85b+c)=1/2(8521+40.5(5898+1992)-81x3970) =
1/2(8521+40.5x7890-81x3970)= 1/2(8521+81x3945-317600)=
1/2(8521+319545-317600)= 1/2(8521+1945) =10466/2 =5233
Answer is 5233.
Problem Loading...
Note Loading...
Set Loading...
We note that:
⎩ ⎪ ⎨ ⎪ ⎧ f ( 1 ) = 1 9 9 3 = 1 × 1 9 3 3 f ( 2 ) = 3 9 8 6 = 2 × 1 9 9 3 f ( 3 ) = 5 9 7 9 = 3 × 1 9 9 3
So we can induce that:
f ( x ) = ( x − 1 ) ( x − 2 ) ( x − 3 ) ( x + α ) + 1 9 3 3 x
⇒ { f ( 1 1 ) = ( 1 0 ) ( 9 ) ( 8 ) ( 1 1 + α ) + 1 9 3 3 ( 1 1 ) f ( − 7 ) = ( − 8 ) ( − 9 ) ( − 1 0 ) ( − 7 + α ) + 1 9 3 3 ( − 7 ) = 2 9 8 4 3 + 7 2 0 α = − 8 9 1 1 − 7 2 0 α
⇒ 4 1 [ f ( 1 1 ) + f ( − 7 ) ] = 4 1 ( 2 9 8 4 3 + 7 2 0 α − 8 9 1 1 − 7 2 0 α )
= 4 1 ( 2 0 9 3 2 ) = 5 2 3 3