Given a n t h degree polynomial f ( x ) = a n x n + a n − 1 x n − 1 + . . . + a 2 x 2 + a 1 x 1 + a 0 satisfying a n + a n − 1 + . . . + a 2 + a 1 + a 0 = 0 ( a n must not equal to 0).
Can 1 be a solution to this polynomial? Prove it.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
f(1)=a(n)+a(n-1)+a(n-2)+...+a(0)=0 (given). This implies 1 is a root of f(x)
Problem Loading...
Note Loading...
Set Loading...
Not only can 1 be a solution, 1 must be a solution! f ( 1 ) = a n + a n − 1 + ⋯ + a 2 + a 1 + a 0 = 0