Polynomial Coeficients

Algebra Level 5

P ( x ) = A x 7 + B x 6 + C x 5 + D x 4 + E x 3 + F x 2 + G x 1 + H \large P(x)=A{ x }^{ 7 }+B{ x }^{ 6 }+C{ x }^{ 5 }+D{ x }^{ 4 }+E{ x }^{ 3 }+F{ x }^{ 2 }+G{ x }^{ 1 }+H

Let P ( x ) P(x) be a 7 th 7^\text{th} degree polynomial such that P ( x ) + 1 P(x) + 1 is divisible by ( x 1 ) 4 { (x-1) }^{ 4 } and P ( x ) 1 P(x) - 1 is divisible by ( x + 1 ) 4 { (x+1) }^{ 4 } . Evaluate C + E C+E .


The answer is 0.875.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Vitor Santos
May 10, 2016
  • Using the divisibility which was given in the question, we have P ( x ) + 1 = Q ( x ) 1 ( x 1 ) 4 P(x)+1={ { Q(x) }_{ 1 }(x-1) }^{ { 4 } } and P ( x ) 1 = Q ( x ) 2 ( x + 1 ) 4 P(x)-1={ { Q(x) }_{ 2 }(x+1) }^{ { 4 } } . Note that Q ( x ) 1 {Q(x)}_{1} and Q ( x ) 2 {Q(x)}_{2} are the quotients for each division.

  • Derivating in both sides, ( P ( x ) + 1 ) = ( ( x 1 ) 4 Q ( x ) 1 ) P ( x ) = ( x 1 ) 3 Q ( x ) 3 (P(x)+1)'=({ (x-1) }^{ { 4 } }{ Q(x) }_{ 1 })'\quad \rightarrow \quad P'(x)={ (x-1) }^{ { 3 } }{ Q(x) }_{ 3 } and ( P ( x ) 1 ) = ( ( x + 1 ) 4 Q ( x ) 2 ) P ( x ) = ( x + 1 ) 3 Q ( x ) 4 (P(x)-1)'=({ (x+1) }^{ { 4 } }{ Q(x) }_{ 2 })' \rightarrow P'(x)={ (x+1) }^{ { 3 } }{ Q(x) }_{ 4 } .

  • Then we can concatenate expressions as, P ( x ) = ( x + 1 ) 3 ( x 1 ) 3 Q ( x ) 5 P'(x)={ (x+1) }^{ 3 }{ (x-1) }^{ 3 }{ Q(x) }_{ 5 } . But this quotient Q ( x ) 5 {Q(x)}_{5} is a constant,a pure number, because deg ( P ( x ) ) = 7 \deg (P(x))=7 then deg ( P ( x ) ) = 6 \deg (P'(x))=6 , because is the first derivative. So let Q ( x ) 5 = α { Q(x) }_{5} = \alpha .

  • Expanding: P ( x ) = ( ( x + 1 ) ( x 1 ) ) 3 α = α ( x 6 3 x 4 + 3 x 2 1 ) P'(x)=({ (x+1)(x-1)) }^{ 3 }\alpha =\alpha ({ x }^{ 6 }-3{ x }^{ 4 }+3{ x }^{ 2 }-1) .

  • Integrating both sides P ( x ) d x = a ( x 6 3 x 4 + 3 x 2 1 ) d x P ( x ) = a x 7 7 3 a x 5 5 + a x 3 a x + c \int { P'(x)dx } =a\int { ({ x }^{ 6 }-3{ x }^{ 4 }+3{ x }^{ 2 }-1)dx } \rightarrow P(x)= \cfrac { a{ x }^{ 7 } }{ 7 } -\cfrac { 3a{ x }^{ 5 } }{ 5 } +a{ x }^{ 3 }-a{ x } + c .

  • On that expression, P ( x ) + 1 = Q ( x ) 1 ( x 1 ) 4 P(x)+1={ { Q(x) }_{ 1 }(x-1) }^{ { 4 } } , make x = 1 x=1 , P ( 1 ) + 1 = Q ( 1 ) 1 ( 1 1 ) 4 = 0 P(1)+1={ { Q(1) }_{ 1 }(1-1) }^{ { 4 } }=0 , so P ( 1 ) = 1 P(1) = -1 , analogously P ( 1 ) = 1 P(-1)=1 .

  • Substituting P ( 1 ) = 1 P(1) = -1 and P ( 1 ) = 1 P(-1)=1 on P ( x ) = a x 7 7 3 a x 5 5 + a x 3 a x + c P(x)= \cfrac { a{ x }^{ 7 } }{ 7 } -\cfrac { 3a{ x }^{ 5 } }{ 5 } +a{ x }^{ 3 }-a{ x } + c we get P ( 1 ) = a 7 3 a 5 + c = 1 P(1)=\cfrac { a }{ 7 } -\cfrac { 3a }{ 5 } +c=-1 and P ( 1 ) = a 7 + 3 a 5 + c = 1 P(-1)=-\cfrac { a }{ 7 } +\cfrac { 3a }{ 5 } +c=1 .

  • Solving the system α = 35 16 \alpha =\cfrac { 35 }{ 16 } and then, a 3 a 5 = 35 16 3 5 35 16 = 35 16 21 16 = 14 16 = 7 8 a-\cfrac { 3a }{ 5 } =\cfrac { 35 }{ 16 } -\cfrac { 3 }{ 5 } \cfrac { 35 }{ 16 } =\cfrac { 35 }{ 16 } -\cfrac { 21 }{ 16 } =\cfrac { 14 }{ 16 } =\cfrac { 7 }{ 8 }

Obs: The numbers that should appear from the derivation are "inside" the quotients Q ( x ) 3 {Q(x)}_{3} and Q ( x ) 4 {Q(x)}_{4} .

Obs: The c (integration constant) was zero, if you try to solve the system it will lead to a contradiction, so the only possibility was the constant being zero.

Wow! Thanks for sharing this problem and solution. I upvoted your solution (+1)

Pranshu Gaba - 5 years, 1 month ago

Awesome,I never think of differentiating the remainder equation!

沂泓 纪 - 5 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...