Polynomial Dilemma

Algebra Level 4

Let P(x) be a polynomial with deg P 3 \ge 3 and with real coefficients. Suppose that Q 1 ( x ) , Q 2 ( x ) , Q ( x ) { Q }_{ 1 }(x), { Q }_{ 2 }(x), Q(x) are polynomials and R ( x ) R(x) is a degree 2 polynomial such that: P ( x ) = Q 1 ( x ) ( x + 2 ) 13 = Q 2 ( x ) ( x 2 3 x 4 ) 5 x 11 = Q ( x ) ( x + 2 ) ( x 2 3 x 4 ) + R ( x ) P(x) = { Q }_{ 1 }(x)(x+2)-13 = { Q }_{ 2 }(x)({ x }^{ 2 }-3x-4)-5x-11 = Q(x)(x+2)({ x }^{ 2 }-3x-4)+R(x)

Find R ( 5 ) . |R(5)|.


The answer is 48.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

S i n c e P ( x ) = Q ( x ) ( x 4 ) ( x 2 3 x 4 ) + R ( x ) , t h e n t h e r e m a i n d e r R ( x ) i s i n t h e f o r m R ( x ) = A x 2 + B x + C W h e n x = 2 , P ( 2 ) = Q 1 ( 2 ) ( 2 + 2 ) 13 = Q ( 2 ) ( 2 + 2 ) [ ( 2 ) 2 3 ( 2 ) + 4 ) + R ( 2 ) R ( 2 ) = 13 4 A 2 B + C = 13 ( i ) W h e n x = 4 , P ( 4 ) = Q 2 ( 4 ) [ ( 4 ) 2 3 ( 4 ) 4 ] 5 ( 4 ) 11 = Q ( 4 ) ( 4 + 2 ) [ ( 4 ) 2 3 ( 4 ) 4 ] + R ( 4 ) R ( 4 ) = 31 16 A + 4 B + C = 31 ( i i ) W h e n x = 1 , P ( 1 ) = Q 2 ( 1 ) [ ( 1 ) 2 3 ( 1 ) 4 ] 5 ( 1 ) 11 = Q ( 1 ) ( 1 + 2 ) [ ( 1 ) 2 3 ( 1 ) 4 ] + R ( 1 ) R ( 1 ) = 6 A B + C = 6 ( i i i ) S u b t r a c t i n g ( i ) f r o m ( i i ) 12 A + 6 B = 18 2 A + B = 3 ( i v ) S u b t r a c t i n g ( i i i ) f r o m ( i ) , 3 A B = 7 ( v ) A d d i n g ( i v ) a n d ( v ) , 5 A = 10 A = 2 C o n s e q u e n t l y , w e h a v e B = 1 a n d C = 3. H e n c e , R ( x ) = 2 x 2 + x 3. R ( 5 ) = 2 ( 5 ) 2 + 5 3 = 48 = 48. Since\quad P(x)\quad =\quad Q(x)(x-4)({ x }^{ 2 }-3x-4)+R(x),\quad then\quad the\quad remainder\quad R(x)\quad is\quad in\quad the\quad form\quad R(x)\quad =\quad A{ x }^{ 2 }+Bx+C\\ \\ When\quad x\quad =\quad -2,\\ P(-2)\quad =\quad { Q }_{ 1 }(-2)(-2+2)-13\quad =\quad Q(-2)(-2+2)[{ (-2) }^{ 2 }-3(-2)+4)+R(-2)\\ \Longrightarrow \quad R(-2)\quad =\quad -13\\ 4A-2B+C\quad =\quad -13\quad (i)\\ \\ When\quad x\quad =\quad 4,\\ P(4)\quad =\quad { Q }_{ 2 }(4)[{ (4) }^{ 2 }-3(4)-4]-5(4)-11\quad =\quad Q(4)(4+2)[{ (4) }^{ 2 }-3(4)-4]+R(4)\\ \Longrightarrow R(4)\quad =\quad -31\\ 16A+4B+C\quad =\quad -31\quad (ii)\\ \\ When\quad x\quad =\quad -1,\\ P(-1)\quad =\quad { Q }_{ 2 }(-1)[{ (-1) }^{ 2 }-3(-1)-4]-5(-1)-11\quad =\quad Q(-1)(-1+2)[{ (-1) }^{ 2 }-3(-1)-4]+R(-1)\\ \Longrightarrow R(-1)\quad =\quad -6\\ A-B+C\quad =\quad -6\quad (iii)\\ \\ Subtracting\quad (i)\quad from\quad (ii)\\ 12A+6B\quad =\quad -18\\ 2A+B\quad =\quad -3\quad (iv)\\ \\ Subtracting\quad (iii)\quad from\quad (i),\quad \\ 3A-B\quad =\quad -7\quad (v)\\ \\ Adding\quad (iv)\quad and\quad (v),\\ 5A\quad =\quad -10\\ A\quad =\quad -2\\ \\ Consequently,\quad we\quad have\quad B\quad =\quad 1\quad and\quad C\quad =\quad -3.\quad Hence,\quad R(x)\quad =\quad -2{ x }^{ 2 }+x-3.\\ |R(5)|\quad =\quad |-2{ (5) }^{ 2 }+5-3|\quad =\quad |-48|\quad =\quad 48.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...