Polynomial Division

Algebra Level 3

If x 12 = 1 x x-12=\dfrac { 1 }{ x } for x R + x\in \mathbb R^+ , find

x 4 10 x 3 15 x 2 122 x + 2012 \large x^4-10x^3-15x^ 2-122x+2012


The answer is 2022.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Oct 21, 2017

Given that x 12 = 1 x x-12=\dfrac 1x , x 2 12 x = 1 \implies x^2-12x=1 . Then we have

X = x 4 10 x 3 15 x 2 122 x + 2012 = x 2 ( x 2 12 x ) + 2 x 3 15 x 2 122 x + 2012 = x 2 + 2 x 3 15 x 2 122 x + 2012 = 2 x 3 14 x 2 122 x + 2012 = 2 x ( x 2 12 x ) + 10 x 2 122 x + 2012 = 2 x + 10 x 2 122 x + 2012 = 10 x 2 120 x + 2012 = 10 ( x 2 12 x ) + 2012 = 10 + 2012 = 2022 \begin{aligned} X &= x^4-10x^3-15x^2-122x+2012 \\ &= x^2(x^2-12x)+2x^3-15x^2-122x+2012 \\ &= x^2+2x^3-15x^2-122x+2012 \\ &= 2x^3-14x^2-122x+2012 \\ &= 2x(x^2-12x)+10x^2-122x+2012 \\ &= 2x+10x^2-122x+2012 \\ &= 10x^2-120x+2012 \\ &= 10(x^2-12x)+2012 \\ &= 10+2012 \\ &= \boxed{2022} \end{aligned}

This is the most efficient way to do this!

Aditya Narayan Sharma - 3 years, 7 months ago

Interesting approach haha...

James R T - 3 years, 7 months ago
James R T
Oct 17, 2017

If x 12 = 1 x x-12=\frac { 1 }{ x } , multiply both sides of the equation with x x and move all terms to the left side of the equation:

x 2 12 x 1 = 0 x^2-12x-1=0

Hence, by long division,

x 4 10 x 3 15 x 2 122 x + 2012 = ( x 2 12 x 1 ) ( x 2 + 2 x + 10 ) + 2022 = ( 0 ) ( x 2 + 2 x + 10 ) + 2022 = 2022 x^{ 4 }-10x^{ 3 }-15x^{ 2 }-122x+2012=(x^2-12x-1)(x^2+2x+10)+2022=(0)(x^2+2x+10)+2022=2022

For completeness, it's better to show that there exists a positive solution to the equation x 12 = 1 / x x-12=1/x

Pi Han Goh - 3 years, 7 months ago

Agreed. @Pi Han Goh

James R T - 3 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...