Polynomial Ends here

Algebra Level 4

Let a 1 , a 2 , a 3 , , a 2018 a_1, a_2, a_3, \cdots , a_{2018} be the roots of the polynomial

x 2018 + x 2017 + + x 2 + x 1345 = 0 \large\ { x }^{ 2018 } + { x }^{ 2017 } + \cdots + { x }^{ 2 } + x - 1345 = 0

Evaluate:

n = 1 2018 1 1 a n \large\ \sum _{ n=1 }^{ 2018 }{ \frac { 1 }{ 1 - { a }_{ n } } }


The answer is 3027.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Nov 19, 2018

Let f ( x ) = x 2018 + x 2017 + + x 2 + x 1345 f(x) = x^{2018} + x^{2017} + \cdots + x^2 + x - 1345 . Since a 1 , a 2 , a 3 , a 2018 a_1, a_2, a_3, \cdots a_{2018} are roots of f ( x ) f(x) , f ( x ) = n = 1 2018 ( x a n ) \implies f(x) = \displaystyle \prod_{n=1}^ {2018} (x-a_n) . Now consider

n = 1 2018 1 1 a n = k = 1 2018 n k 2018 ( 1 a n ) n = 1 2018 ( 1 a n ) = k = 1 2018 k c k f ( 1 ) where c k is the coefficient of x k = k = 1 2018 k 2018 1345 in f ( x ) and all c k = 1. = 2018 ( 2018 + 1 ) / 2 673 = 3027 \begin{aligned} \sum_{n=1}^{2018} \frac 1{1-a_n} & = \frac {\sum_{k=1}^{2018}\prod_{n\ne k}^{2018} (1-a_n)}{\prod_{n=1}^{2018} (1-a_n)} \\ & = \frac {\sum_{k=1}^{2018} k\color{#3D99F6} c_k}{f(1)} & \small \color{#3D99F6} \text{where }c_k \text{ is the coefficient of }x^k \\ & = \frac {\sum_{k=1}^{2018} k}{2018-1345} & \small \color{#3D99F6} \text{in } f(x) \text{ and all }c_k = 1. \\ & = \frac {2018(2018+1)/2}{673} \\ & = \boxed{3027} \end{aligned}

Mark Hennings
Nov 19, 2018

If we make the substitution y = 1 1 x y = \tfrac{1}{1-x} , the equation becomes 1345 x = 1 + x + x 2 + + x 2017 1345 x 1 x = x 2018 1 1345 1 y 1 = ( y 1 y ) 2018 1 y 2018 ( y 1 ) ( y 1 ) 2019 1345 y 2018 = 0 \begin{aligned} \frac{1345}{x} & = \; 1+ x + x^2 + \cdots+ x^{2017} \\ 1345\frac{x-1}{x} & = \; x^{2018} - 1 \\ -1345\frac{1}{y-1} & = \; \left(\frac{y-1}{y}\right)^{2018} - 1 \\ y^{2018}(y-1) - (y-1)^{2019} - 1345y^{2018} & = \; 0 \end{aligned} and this last is a polynomial of degree 2018 2018 whose zeros are 1 1 a j \tfrac{1}{1-a_j} for 1 j 2018 1 \le j \le 2018 . Since y 2018 ( y 1 ) ( y 1 ) 2019 1345 y 2018 = ( 2019 1345 1 ) y 2018 ( 2019 2 ) y 2017 + = 673 y 2018 2037171 y 2017 + y^{2018}(y-1) - (y-1)^{2019} - 1345y^{2018} \; = \; \big(2019 - 1345 - 1\big)y^{2018} - \binom{2019}{2}y^{2017} + \cdots \; = \; 673y^{2018} - 2037171y^{2017} + \cdots we deduce that j = 1 2018 1 1 a j = 2037171 673 = 3027 \sum_{j=1}^{2018} \frac{1}{1-a_j} \; = \; \frac{2037171}{673} \; = \; \boxed{3027}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...