Let a 1 , a 2 , a 3 , ⋯ , a 2 0 1 8 be the roots of the polynomial
x 2 0 1 8 + x 2 0 1 7 + ⋯ + x 2 + x − 1 3 4 5 = 0
Evaluate:
n = 1 ∑ 2 0 1 8 1 − a n 1
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
If we make the substitution y = 1 − x 1 , the equation becomes x 1 3 4 5 1 3 4 5 x x − 1 − 1 3 4 5 y − 1 1 y 2 0 1 8 ( y − 1 ) − ( y − 1 ) 2 0 1 9 − 1 3 4 5 y 2 0 1 8 = 1 + x + x 2 + ⋯ + x 2 0 1 7 = x 2 0 1 8 − 1 = ( y y − 1 ) 2 0 1 8 − 1 = 0 and this last is a polynomial of degree 2 0 1 8 whose zeros are 1 − a j 1 for 1 ≤ j ≤ 2 0 1 8 . Since y 2 0 1 8 ( y − 1 ) − ( y − 1 ) 2 0 1 9 − 1 3 4 5 y 2 0 1 8 = ( 2 0 1 9 − 1 3 4 5 − 1 ) y 2 0 1 8 − ( 2 2 0 1 9 ) y 2 0 1 7 + ⋯ = 6 7 3 y 2 0 1 8 − 2 0 3 7 1 7 1 y 2 0 1 7 + ⋯ we deduce that j = 1 ∑ 2 0 1 8 1 − a j 1 = 6 7 3 2 0 3 7 1 7 1 = 3 0 2 7
Problem Loading...
Note Loading...
Set Loading...
Let f ( x ) = x 2 0 1 8 + x 2 0 1 7 + ⋯ + x 2 + x − 1 3 4 5 . Since a 1 , a 2 , a 3 , ⋯ a 2 0 1 8 are roots of f ( x ) , ⟹ f ( x ) = n = 1 ∏ 2 0 1 8 ( x − a n ) . Now consider
n = 1 ∑ 2 0 1 8 1 − a n 1 = ∏ n = 1 2 0 1 8 ( 1 − a n ) ∑ k = 1 2 0 1 8 ∏ n = k 2 0 1 8 ( 1 − a n ) = f ( 1 ) ∑ k = 1 2 0 1 8 k c k = 2 0 1 8 − 1 3 4 5 ∑ k = 1 2 0 1 8 k = 6 7 3 2 0 1 8 ( 2 0 1 8 + 1 ) / 2 = 3 0 2 7 where c k is the coefficient of x k in f ( x ) and all c k = 1 .