Polynomial Equation Under The Moon Light

Algebra Level 4

If we know that x 6 + x 5 + x 4 + x 3 + x 2 + x + 1 = 0 x^6 + x^5 + x^4 + x^3 + x^2 +x + 1 = 0

And given that a = ( 1 x + x ) ( 1 x + x + 2 ) ( 1 x + x 1 ) b = ( 1 x + x ) 3 + ( 1 x + x 1 ) 2 \begin{aligned} a &=& \left(\frac{1}{x} + x \right)\left(\frac{1}{x} +x + 2\right)\left(\frac{1}{x} + x - 1\right) \\ b &=& \left(\frac{1}{x} + x \right)^3 +\left (\frac{1}{x} +x - 1 \right)^2 \end{aligned}

What is the value of a + b a+b ?


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

A straightforward computation...we will compute b b first. b = ( 1 x + x ) 3 + ( 1 x + x 1 ) 2 b=\left(\frac{1}{x}+x\right)^3+\left(\frac{1}{x}+x-1\right)^2 = 1 x 3 + 3 x + 3 x + x 3 + 1 x 2 + x 2 + 1 + 2 2 x 2 x =\frac{1}{x^3}+\frac{3}{x}+3x+x^3+\frac{1}{x^2}+x^2+1+2-\frac{2}{x}-2x = 1 x 3 + 1 x 2 + 1 x + 3 + x + x 2 + x 3 = 2 =\frac{1}{x^3}+\frac{1}{x^2}+\frac{1}{x}+3+x+ x^2+x^3=2 (divide the given equation by x 3 x^3 ). Now let y = x + 1 x y=x+\frac{1}{x} . Then a = y ( y + 2 ) ( y 1 ) = y 3 + y 2 2 y = y 3 + ( y 1 ) 2 1 = b 1 = 1 a=y(y+2)(y-1)=y^3+y^2-2y=y^3+(y-1)^2-1=b-1=1 a + b = 1 + 2 = 3 a+b=1+2=\boxed{3}

x 6 + x 5 + x 4 + x 3 + x 2 + x + 1 = 0 x 3 + x 2 + x + 1 + 1 x + 1 x 2 + 1 x 3 = 0 ( x 3 + 3 x + 3 x + 1 x 3 ) 3 x 3 x + ( x 2 + 2 + 1 x 2 ) 2 + ( x + 1 x ) + 1 = 0 ( x + 1 x ) 3 + ( x + 1 x ) 2 2 ( x + 1 x ) 1 = 0 x^6+x^5+x^4+x^3+x^2+x+1 = 0 \\ \Rightarrow x^3+x^2+x+1+\dfrac{1}{x} + \dfrac{1}{x^2} + \dfrac{1}{x^3} = 0 \\ \left(x^3+3x+\frac{3}{x} + \frac{1}{x^3} \right) - 3x- \frac{3}{x} + \left(x^2+2+ \frac{1}{x^2} \right) - 2 + \left(x + \frac{1}{x} \right) + 1 = 0 \\ \left(x + \dfrac{1}{x} \right)^3 + \left(x + \dfrac{1}{x} \right)^2 - 2\left(x + \dfrac{1}{x} \right) -1 = 0

Now we have:

( x + 1 x ) ( x + 1 x + 2 ) ( x + 1 x 1 ) = ( x + 1 x ) [ ( x + 1 x ) 2 + ( x + 1 x ) 2 ] = ( x + 1 x ) 3 + ( x + 1 x ) 2 2 ( x + 1 x ) = 1 a = 1 \left(x + \dfrac{1}{x} \right) \left(x + \dfrac{1}{x} + 2 \right) \left(x + \dfrac{1}{x} -1 \right) \\ = \left(x + \dfrac{1}{x} \right) \left[ \left(x + \dfrac{1}{x} \right)^2 + \left(x + \dfrac{1}{x} \right) -2 \right] \\ = \left(x + \dfrac{1}{x} \right)^3 + \left(x + \dfrac{1}{x} \right)^2 - 2\left(x + \dfrac{1}{x} \right) = 1 \quad \Rightarrow a = 1

( x + 1 x ) 3 + ( x + 1 x 1 ) 2 = ( x + 1 x ) 3 + ( x + 1 x ) 2 2 ( x + 1 x ) + 1 = 2 b = 2 \left(x + \dfrac{1}{x} \right)^3 + \left(x + \dfrac{1}{x} - 1 \right)^2 \\ = \left(x + \dfrac{1}{x} \right)^3 + \left(x + \dfrac{1}{x} \right)^2 -2 \left(x + \dfrac{1}{x} \right) + 1 = 2 \quad\Rightarrow b = 2

Therefore, a + b = 1 + 2 = 3 \quad a+b = 1 + 2 = \boxed{3}

x 6 + x 5 + x 4 + x 3 + x 2 + x + 1 = 0 x 7 1 = 0 x^6 + x^5 + x^4 + x^3 + x^2 +x + 1 = 0 \Rightarrow x^7 - 1 = 0

So, x 7 = 1 x^7 = 1

Thus, x 6 1 + x + x 5 1 + x 2 + x 4 1 + x 3 + 1 = 0 \frac{x^6}{1} + x + \frac{x^5}{1} + x^2 + \frac{x^4}{1} + x^3 + 1 = 0

x 6 x 7 + x + x 5 x 7 + x 2 + x 4 x 7 + x 3 + 1 = 0 \Rightarrow \frac{x^6}{x^7} + x + \frac{x^5}{x^7} + x^2 + \frac{x^4}{x^7} + x^3 + 1 = 0

( 1 x + x ) + ( 1 x 2 + x 2 ) + ( 1 x 3 + x 3 ) + 1 = 0 \Rightarrow (\frac{1}{x} + x) + (\frac{1}{x^2} + x^2) + (\frac{1}{x^3} + x^3) + 1 =0

( 1 x + x ) + ( ( 1 x + x ) 2 2 ) + ( ( 1 x + x ) 3 3 ( 1 x + x ) ) + 1 = 0 \Rightarrow (\frac{1}{x} +x) + ((\frac{1}{x}+x)^2 -2) + ((\frac{1}{x}+x)^3 - 3(\frac{1}{x}+x)) + 1 =0

( 1 x + x ) 3 + ( 1 x + x ) 2 2 ( 1 x + x ) 1 = 0 \Rightarrow (\frac{1}{x} + x)^3 + (\frac{1}{x} + x)^2 - 2 (\frac{1}{x} + x) - 1 = 0 [eq. 1]

( 1 x + x ) ( ( 1 x + x ) 2 + ( 1 x + x ) 2 ) 1 = 0 \Rightarrow (\frac{1}{x} + x)((\frac{1}{x} + x)^2 + (\frac{1}{x} + x) - 2) - 1 = 0

( 1 x + x ) ( 1 x + x + 2 ) ( 1 x + x 1 ) 1 = 0 \Rightarrow (\frac{1}{x} + x)(\frac{1}{x} + x + 2)(\frac{1}{x} + x - 1) - 1 = 0

( 1 x + x ) ( 1 x + x + 2 ) ( 1 x + x 1 ) = 1 = a \Rightarrow (\frac{1}{x} + x)(\frac{1}{x} + x + 2)(\frac{1}{x} + x - 1) = 1 = a

Using [eq 1] ( 1 x + x ) 3 + ( 1 x + x ) 2 2 ( 1 x + x ) + 1 = 2 \Rightarrow (\frac{1}{x} + x)^3 + (\frac{1}{x} + x)^2 -2(\frac{1}{x} + x) + 1 = 2

( 1 x + x ) 3 + ( 1 x + x 1 ) 2 = 2 = b \Rightarrow (\frac{1}{x} + x)^3 + (\frac{1}{x} +x - 1)^2 = 2 = b

Therefore, a + b = 1 + 2 = 3 a+b = 1 + 2 = 3

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...