Polynomial Equations of the Year!

Algebra Level 4

f ( x ) = 1 x + x 2 x 3 + + x 16 x 17 = α 0 + α 1 ( 1 + x ) + α 2 ( 1 + x ) 2 + + α 17 ( 1 + x ) 17 \large \begin{aligned} f (x) & = 1 - x + { x }^{ 2 } - { x }^{ 3 } +\cdots + { x }^{ 16 } - { x }^{ 17 } \\ & = { \alpha }_{ 0 } + { \alpha }_{ 1 }{( 1 + x) } + { \alpha }_{ 2 }{(1+x) }^{ 2 } +\cdots + { \alpha }_{ 17 }{(1 + x) }^{ 17 }\end{aligned}

For f ( x ) f(x) as defined above, find the value of α 2 \alpha _ 2 .


The answer is 816.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jan 31, 2018

f ( x ) = 1 x + x 2 x 3 + + x 16 x 17 = α 0 + α 1 ( 1 + x ) + α 2 ( 1 + x ) 2 + + α 17 ( 1 + x ) 17 \begin{aligned} f(x) & = 1 - x + x^2 - x^3 + \cdots + x^{16} - x^{17} \\ & = \alpha_0 + \alpha_1(1+x) + \alpha_2(1+x)^2 + \cdots + \alpha_{17}(1+x)^{17} \end{aligned}

Let u = 1 + x u = 1+x . Then we have:

g ( u ) = α 0 + α 1 u + α 2 u 2 + + α 17 u 17 g ( u ) = α 1 + 2 α 2 u + 3 α 3 u 2 + + 17 α 17 u 16 g ( u ) = 2 α 2 + 6 α 3 u + 12 α 4 u 2 + + 272 α 17 u 15 g ( 0 ) = 2 α 2 α 2 = g ( 0 ) 2 \begin{aligned} g(u) & = \alpha_0 + \alpha_1u + \alpha_2u^2 + \cdots + \alpha_{17}u^{17} \\ g'(u) & = \alpha_1 + 2\alpha_2u + 3\alpha_3u^2 + \cdots + 17\alpha_{17}u^{16} \\ g''(u) & = 2\alpha_2 + 6\alpha_3u + 12\alpha_4u^2 + \cdots + 272\alpha_{17}u^{15} \\ g''(0) & = 2\alpha_2 \\ \implies \alpha_2 & = \frac {g''(0)}2 \end{aligned}

Note that g ( u ) = f ( x ) d x d u = f ( x ) g''(u) = f''(x)\cdot \dfrac {dx}{du} = f''(x) . And we have:

f ( x ) = 1 x + x 2 x 3 + + x 16 x 17 f ( x ) = 1 + 2 x 3 x 2 + 4 x 3 + 16 x 15 17 x 16 f ( x ) = 2 1 3 2 x + 4 3 x 2 5 4 x 3 + + 16 15 x 14 17 16 x 16 when u = 0 x = 1 \begin{aligned} f(x) & = 1 - x + x^2 - x^3 + \cdots + x^{16} - x^{17} \\ f'(x) & = - 1 + 2x - 3x^2 + 4x^3 - \cdots + 16x^{15} - 17x^{16} \\ f''(x) & = 2 \cdot 1 - 3\cdot 2 x + 4\cdot 3 x^2 - 5\cdot 4x^3 + \cdots + 16\cdot 15 x^{14} - 17 \cdot 16 x^{16} & \small \color{#3D99F6} \text{when }u=0 \implies x = -1 \end{aligned}

g ( 0 ) = f ( 1 ) = 2 1 + 3 2 + 4 3 x 2 + 5 4 + + 16 15 + 17 16 = n = 1 16 n ( n + 1 ) = n = 1 16 ( n 2 + n ) = 16 ( 17 ) ( 33 ) 6 + 16 ( 17 ) 2 = 1632 α 2 = g ( 0 ) 2 = 1632 2 = 816 \begin{aligned} \implies g''(0) & = f''(-1) = 2 \cdot 1 + 3\cdot 2 + 4\cdot 3 x^2 + 5\cdot 4 + \cdots + 16\cdot 15 + 17\cdot 16 \\ & = \sum_{n=1}^{16} n(n+1) = \sum_{n=1}^{16} \left(n^2+n\right) = \frac {16(17)(33)}6 + \frac {16(17)}2 = 1632 \\ \implies \alpha_2 & = \frac {g''(0)}2 = \frac {1632}2 = \boxed{816} \end{aligned}

Thanks sir for the solution.

Priyanshu Mishra - 3 years, 4 months ago
Rishabh Jain
Jan 31, 2018

Use formula for GP to get f ( x ) = 1 x 18 1 + x f(x)=\dfrac{1-x^{18}}{1+x} . Then substitute 1 + x = t 1+x=t to get: 1 ( t 1 ) 18 t = i = 0 17 α i t i \dfrac{1-(t-1)^{18}}{t}=\displaystyle\sum_{i=0}^{17}\alpha_{i}t^i Use formula for binomial expansion on LHS to get: r = 0 17 ( 18 r + 1 ) ( 1 ) r t r = i = 0 17 α i t i \implies \sum_{r=0}^{17} \binom{18}{r+1}(-1)^{r} t^{r}=\displaystyle\sum_{i=0}^{17}\alpha_{i}t^i Compare coefficient of t 2 t^2 on both sides to get: α 2 = ( 18 3 ) = 816 \alpha_2=\binom{18}3=\boxed{816} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...