Polynomial for Fibonacci I I II

Algebra Level 3

Let P n ( x ) P_{n}(x) be a polynomial of n n terms such that: P n ( x ) = 1 + x + 2 x 2 + 4 x 3 + 8 x 4 + + F n x n 1 P_{n}(x)= 1+x+2x^2+4x^3+8x^4+\dots +F_{n}x^{n-1} where F n = F n 1 + F n 2 + + F 1 F_{n}=F_{n-1}+F_{n-2}+\dots +F_{1}

Find the value of lim n P n ( 1 3 ) \lim\limits_{n \to \infty}P_{n}(\frac{1}{3})


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Mar 18, 2019

P n ( x ) = 1 + x + 2 x 2 + 4 x 3 + 8 x 4 + F n = 2 n 2 for all n 2 (see proof) = 1 + x ( 1 + 2 x + ( 2 x ) 2 + ( 2 x ) 3 + ) An infinite geometric progression = 1 + x 1 2 x for 2 x < 1 \begin{aligned} P_n(x) & = 1 + x + 2x^2 + 4x^3 + 8x^4 + \cdots & \small \color{#3D99F6} F_n = 2^{n-2} \text{ for all }n \ge 2 \text{ (see proof)} \\ & = 1 + x \color{#3D99F6} \left(1 + 2x+(2x)^2 + (2x)^3 + \cdots \right) & \small \color{#3D99F6} \text{An infinite geometric progression} \\ & = 1 + \frac x{1-2x} & \small \color{#3D99F6} \text{for }|2x| < 1 \end{aligned}

P n ( 1 3 ) = 1 + 1 3 1 2 3 = 2 \implies P_n \left(\frac 13\right) = 1 + \frac {\frac 13}{1-\frac 23} = \boxed 2


Proof by induction for the claim F n = 2 n 2 F_n = 2^{n-2} for all n 2 n\ge 2 :

For n = 2 n=2 , F 2 = 2 2 2 = 1 F_2 = 2^{2-2} = 1 . Therefore, the claim is true for n = 2 n=2 . Assuming the claim is true for n n then:

F n + 1 = F n + F n 1 + F n 2 + F n 3 + + F 1 = F n + F n = 2 F n = 2 ( 2 n 2 = 2 n 1 \begin{aligned} F_{n+1} & = F_n + \color{#3D99F6} F_{n-1} + F_{n-2} + F_{n-3} + \cdots + F_1 \\ & = F_n + \color{#3D99F6} F_n \\ & = 2F_n = 2 (2^{n-2} = 2^{n-1} \end{aligned}

Therefore the claim is also true for n + 1 n+1 and hence true for all n 2 n \ge 2 .

Mohd. Hamza
Mar 17, 2019

lim n P n ( x ) = i = 1 F i x i 1 = 1 1 ( x + x 2 + x 3 + + x n 1 ) \lim\limits_{n \to \infty}P_{n}(x) = \displaystyle\sum_{i=1}^{\infty} F_{i}x^{i-1} = \frac{1}{1-(x+x^2+x^3+\dots +x^{n-1})}

1 1 x = 1 + x + x 2 + x 3 + + x n \frac{1}{1-x}=1+x+x^2+x^3+\dots+x^{n} where n n \to \infty

x 1 x = x + x 2 + x 3 + + x n + 1 \Rightarrow \frac{x}{1-x}=x+x^2+x^3+\dots+x^{n+1} i = 1 F i x i 1 = 1 1 ( x 1 x ) \displaystyle\sum_{i=1}^{\infty} F_{i}x^{i-1} = \frac{1}{1-(\frac{x}{1-x})} lim n P n ( x ) = 1 x 1 2 x \Rightarrow \lim\limits_{n \to \infty}P_{n}(x) =\frac{1-x}{1-2x} lim n P n ( 1 3 ) = 2 \Rightarrow \lim\limits_{n \to \infty}P_{n}(\frac{1}{3}) = \boxed{2}

For the proof of generating functions click here

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...